摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,这使得在较小的电荷载流子密度下可以有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上具有发展前景的可扩展外延石墨烯需要分子掺杂,而分子掺杂在环境条件下通常是不稳定的,以补偿来自 SiC 衬底的电子转移。在这里,我们采用了有机电子器件中常见的经典玻璃封装,以使分子掺杂的外延石墨烯对空气中的水和氧分子钝化。我们已经研究了玻璃封装设备中霍尔量子化的稳定性近 1 年。经过近一年的多次热循环,霍尔量子化保持在阈值磁场之上,小于 3.5 n Ω Ω − 1 的测量不确定度,而普通未封装的器件在空气中放置 1 个月后明显显示出与标称量子化霍尔电阻的相对偏差大于 0.05%。
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高约 10%。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高出 150%。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,通过将声子传输到原生非晶态 SiO 2 壳层来实现相关。这项工作发现了迄今为止报道的所有材料中室温下 κ 的最强同位素效应,并启发了同位素富集半导体在微电子领域的潜在应用。
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高 ∼ 10 %。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高 150 %。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,并通过声子传输到原生非晶态 SiO 2 壳层而相关。该信发现了迄今为止报道的所有材料中室温下κ同位素效应最强的材料,并启发了同位素富集半导体在微电子领域的潜在应用。
色散工程和高度非线性纳米光子学的出现有望通过将高横向场约束与超短脉冲操作相结合,开辟一条通往量子光学强相互作用领域的全光学途径。然而,要全面了解此类宽带设备中的光子动力学,对多模非高斯量子物理的建模和仿真提出了重大挑战,这凸显了对复杂的简化模型的需求,这些模型有助于进行有效的数值研究,同时提供有用的物理见解。在本文中,我们回顾了我们最近在不同抽象和通用水平上对宽带光学系统建模的努力,从同步泵浦振荡器的量子输入输出理论的多模扩展到基于非线性波导场论描述的数值方法的开发。我们希望我们的工作不仅能指导正在进行的理论和实验工作,以实现下一代量子设备,还能揭示宽带量子光子学的基本物理原理。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要 - 我们报告了含镁镁(MGF 2)的微型谐振器中的Kerr频率梳子的产生。两个MGF 2微毫无疑问,其Q因子为10 8 andradiiof 180 µMAND 85 µMWEREFAREFRICATICAND和CHACHACTHACTARIDED。尽管处于1550 nm的波长处处于正常的色散状态,但微腔表现出了Kerr Freemencycombs的产生。可见,单一肺炎腔,当带有1550 nm激光器时,产生了一个梳子,具有光谱范围超过250 nm。这种出乎意料的现象强调了MGF 2微孔子的独特非线性特性,并基于超高Q晶体窃窃私语模式的谐振器,为紧凑型Kerr梳子发电机打开了新的视角。在方面上,紫外线(UV)波长范围内MGF 2的透明度表明,将KERR频率梳延伸到UV光谱中的潜力,进一步增强了非线性光子应用中MGF 2微腔的多功能性。
当色散存储在储罐中时,必须保持适当的存储条件。该产品的保质期为6个月,从收据日期开始,如果存储在5到30°C之间的原始未打开的容器中。在分析证书中可以描述的最大存储期间的任何更长的时间均伴随着产品的每次装运,请先优先考虑该建议,在这种情况下,分析证书中所述的时间段应完全权威。不建议使用铁或镀锌的铁容器和设备。腐蚀可能导致在进一步加工时从其分散剂或混合物的变色。因此,我们建议使用由陶瓷,橡胶或搪瓷材料制成的容器和设备,适当完成的不锈钢或塑料(刚性PVC,聚乙烯或聚酯树脂)。由于聚合物分散剂可能倾向于表面膜形成,因此在存储或运输过程中可能会形成皮肤或团块。因此,建议在使用产品之前进行过滤过程。
作者于 1991 年发明了一种新型直视色散元件——棱镜-光栅-棱镜 (PGP)。这种专利元件可以实现小型、低成本的高光谱成像光谱仪,适用于工业和研究应用。介绍了 PGP 光谱仪的光学系统和设计过程。该概念已应用于许多高光谱成像光谱仪。通过详细介绍四种设计,展示了 PGP 构造的潜力。1) 低成本机载高光谱成像光谱仪 AISA 的原型是 PGP 概念的首次应用。2) 开发了一种显微镜成像 UV-VIS-NIR 光谱仪系统,用于对木纤维等微米级物体进行光谱测量。3) 设计了一种连接到光纤探头的多点 PGP 光谱仪,用于在线颜色和油膜厚度测量等工业应用。 4) 介绍了用于大规模光纤布拉格光栅阵列的高速询问系统的 PGP 光谱仪设计。如今,PGP 光谱仪在世界范围内用于工业机器视觉和光谱分析、机载遥感和科学应用。