锂离子电池(LIB)具有循环寿命长、能量密度高、稳定性好等优点,被广泛应用于便携式设备和电动汽车。[1] 然而,全球锂供应有限、成本和安全问题以及对其环境影响的担忧严重阻碍了 LIB 的大规模应用。[2] 因此,后锂离子电池如钠离子(Na + -ion)、钾离子(K + -ion)、钙离子(Ca + 2 -ion)和镁离子(Mg + 2 -ion)电池因其能量密度提高、成本降低、安全性增强、储量丰富以及对环境更加友好而备受关注。[3] 在这种情况下,Mg + 2 和 Ca + 2 等多价离子会经历单电子以上的氧化还原反应,与相应的单价电池相比,其体积能量密度更高。此外-
非常需要设计纳米颗粒表面形状的局部变化。这是因为这些修饰阳离子可以改善生物相容性和细胞摄取。23在这里,我们描述了一种在含核碱酶的多聚膜膜外表面形成局部变形的方法。我们表明,在插入包含互补核酶的二嵌段共聚物时,类似触手的节点可以在聚合物的表面形成(图1b)。与蓄水池一样,膜变形和随之而来的淋巴结形成依赖于不同的膜成分之间的互补氢键。将核碱酶配对的可编程性纳入自组装合成聚合物24 - 28先前已被利用以控制纳米颗粒形态,29 - 35瓶刷组件36和颗粒表面化学,37,以及37层的聚合,38,39货物货物40 - 42-42-42-42-42-42-42和增强的水。43
1。简介量子网络利用量子密钥分布(QKD)来确保通信安全。为了将QKD网络有效地集成到现有基础架构中并具有最佳功能,欧洲和国际QKD标准[1] - [4]提出了一个分层框架,包括量子层,密钥管理(KMS)层和应用层。此体系结构对于启用各种应用程序和用户的加密通信至关重要。第一个主要的量子网络是由DARPA实施的,该网络遵循三层体系结构,并采用了混合转换/中继实现。其他开发项目包括SECOQC网络,专注于中继QKD(可信的中继器原型)设置,东京项目[5]和剑桥量子网络[6]。最近,中国提出了一个46节点量子大都会区域网络[7],连接了40个用户节点,包括三个可信赖的继电器和三个光学开关。但是,如果没有集中的编排,网络的管理仍然是最佳和效率低下的。软件 - 定义的QKD(SDQKD)提供了一种潜在的解决方案来解决此问题并提高网络的效率和灵活性。Madrid SDQKD是QKD技术在SDN环境中首次成功的全面集成,该环境可在3个继电器节点之间提供加密通信[8]。子载波[9]用于在启用3个节点SDN的网络配置中启用通信。[10]最后,最近的开发涉及一个针对QKD的软件定义网络作为服务(SDQAAS)的新框架[10]。
识别网络中的关键节点是一项经典的决策任务,许多方法难以在适应性和效用之间取得平衡。因此,我们提出了一种方法,该方法可以通过大语言模型(LLMS)赋予进化算法(EA),以生成一个称为“ Score_nodes”的函数,该函数可以进一步用于根据分配的分数来识别重要的节点。我们的模型由三个主要组成部分组成:手动初始化,种群管理和基于LLMS的进化。它从初始种群中演变,并手动创建了一组设计的节点评分功能。llms利用他们强大的上下文理解和丰富的编程技能来对个人进行交叉和突变操作,从而产生出色的新功能。然后将这些功能分类,排名和消除,以确保人口的稳定发展,同时保留多样性。广泛的实验证明了我们方法的出色性能,与其他最先进的算法相比,它表明了其强大的发电能力。它可以始终如一,有序地生成各种和高效的节点评分功能。可以在此工作中重现所有结果的所有源代码和模型在此链接上可公开可用:https://anonymon.4open.science/r/llm4cn-6520
涵盖宿主和常驻微生物群的元原则在对抗疾病和应对压力方面起着重要作用。 因此,越来越多的牵引力来建立有关该生态系统的知识基础,尤其是表征宿主与微生物群之间的双向关系。 在这种情况下,代谢组学已成为整个生态系统的主要融合节点。 对这种足智多谋的OMIC成分的系统理解可以阐明特定于生物的响应轨迹和整个生态系统上体现元有机体的通信网格。 将这种知识转化为设计营养素和下一代疗法的持续。 它的主要障碍是关于在本生态系统中保持微妙平衡的基本机制的重要知识差距。 为了弥合这一知识差距,已经提供了可用信息的整体图片,主要关注微生物群 - 代谢物关系动力学。 本文的中心主题是肠脑轴和影响大脑功能的参与的微生物代谢产物。涵盖宿主和常驻微生物群的元原则在对抗疾病和应对压力方面起着重要作用。因此,越来越多的牵引力来建立有关该生态系统的知识基础,尤其是表征宿主与微生物群之间的双向关系。在这种情况下,代谢组学已成为整个生态系统的主要融合节点。对这种足智多谋的OMIC成分的系统理解可以阐明特定于生物的响应轨迹和整个生态系统上体现元有机体的通信网格。将这种知识转化为设计营养素和下一代疗法的持续。它的主要障碍是关于在本生态系统中保持微妙平衡的基本机制的重要知识差距。为了弥合这一知识差距,已经提供了可用信息的整体图片,主要关注微生物群 - 代谢物关系动力学。本文的中心主题是肠脑轴和影响大脑功能的参与的微生物代谢产物。
摘要:二维(2D)杂交有机 - 无机渗透性滑石(HOIP)具有增强的稳定性,高可调性和强型自旋 - 轨道耦合,在广泛的应用中显示出很大的潜力。在这里,我们将2D HOIP的已经丰富的功能扩展到了一个新的领域,实现了拓扑超导性和主要量子计算模式。Especially, we predict that room- temperature ferroelectric BA 2 PbCl 4 (BA for benzylammonium) exhibits topological nodal-point superconductivity (NSC) and gapless Majorana modes on selected edges and ferroelectric domain walls when proximity- coupled to an s-wave superconductor and an in-plane Zeeman field, attractive for experimental verification and application.由于NSC受2D HOIP的空间对称性保护,因此我们设想在此类材料中可以找到更多外来的拓扑超导状态,因为它们的多种非中性空间组可能会在HOIPS和拓扑超导率的田间开设新的途径。关键字:二维,铁电混合钙蛋白,拓扑结节点超导性,边缘/域 - 墙壁Majoragara模式
部署生成式 AI 应用程序或训练基础 AI 模型(例如 ChatGPT、BERT 或 DALL-E)可能需要大量计算,尤其是对于大型复杂模型而言。随着数据量和模型大小的增加,人们开始采用分布式计算来应对这一挑战。它通过将工作负载分布在多个互连的计算节点上来加速训练过程。具体而言,单个分布式任务的运行时间由最慢的参与节点的运行时间控制。网络在确保消息及时到达所有参与节点方面发挥着重要作用。这使得尾部延迟(最后一条参与消息的到达时间)至关重要,尤其是在大规模数据中心部署和存在竞争工作负载的情况下。此外,网络扩展和处理越来越多节点的能力对于训练大型 AI 模型和处理大量数据至关重要。
近年来,可持续能源系统的转变见证了无碳和碳高效发电在电网中的快速部署。然而,碳减排的好处并非在整个电网中均匀体现。每个发电机可以有不同的碳排放率。由于物理功率流的存在,节点功耗由一组发电机的组合来满足,而这种组合由网络拓扑、发电机的特性和电力需求决定。本文介绍了一种基于物理功率流模型的技术,该技术可以根据发电和功率流信息有效地计算每个单个发电机贡献的节点碳排放量。我们还扩展了该技术以计算节点平均碳排放量和边际碳排放率。模拟结果验证了计算的有效性,同时我们的技术为碳审计、碳导向需求管理和未来碳导向产能扩张等应用提供了基本工具。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
1.1 文件目的 ................................................................................................................................................................ 1 1.2 文件关系 .............................................................................................................................................................. 1 1.3 节点操作指南修订流程 ...................................................................................................................................... 1 1.3.1 简介 ...................................................................................................................................................... 1 1.3.2 提交节点操作指南修订请求 ............................................................................................................. 3 1.3.3 节点操作指南修订程序 ............................................................................................................................. 3 1.3.3.1 审查和发布节点操作指南修订请求 ............................................................................................................. 3 1.3.3.2 撤回节点操作指南修订请求 ............................................................................................................. 4 1.3.3.3 ROS 审查和行动 ............................................................................................................................................. 5 1.3.3.4 对 ROS 报告的评论........................................................................................................................... 6 1.3.3.5 节点操作指南修订请求影响分析 ...................................................................................................................... 6 1.3.3.6 ROS 影响分析审查 ...................................................................................................................................... 7 1.3.3.7 基于 ROS 报告的 ERCOT 影响分析 ............................................................................................................. 7 1.3.3.8 PRS 项目优先级审查 ............................................................................................................................. 7 1.3.3.9 技术咨询委员会投票 ............................................................................................................................. 7 1.3.3.10 ERCOT 董事会投票 ............................................................................................................................. 9 1.3.3.11 PUCT 对修订请求的批准 ............................................................................................................. 9 1.3.3.12 行动上诉 ............................................................................................................................................. 10 1.3.4 紧急请求 ................................................................................................................................................................ 10 1.3.5 节点操作指南修订实施 ...................................................................................................................... 11 1.4 定义 .......................................................................................................................................................... 11 自动发电控制 (AGC) ...................................................................................................................................... 12