抽象图神经网络(GNNS)是用于图形相关任务的强大工具,在进步的图形结构化数据中表现出色,同时保持置换不变性。然而,他们的挑战在于新节点表示的晦涩,阻碍了解释性。本文通过解释GNN预测来介绍一个框架,该框架解决了这一限制。所提出的方法采用任何GNN预测,为此,它将简洁的子图作为解释。利用显着性图,这是一种基于归因梯度的技术,我们通过通过反向传播将重要性得分分配给具有知识图的实体来增强可解释性。在药物重新利用知识图上进行了评估,图表网络的命中率为@5分为0.451,命中@10分数为0.672。图显示了明显的结果,最高召回率为0.992。我们的框架强调了GNN功效和可解释性,这在诸如药物重新利用之类的复杂情况下至关重要。通过阿尔茨海默氏病案例研究进行了说明,我们的方法为GNN预测提供了有意义且可理解的解释。这项工作有助于提高GNN在现实世界应用中的透明度和实用性。
“知识图”一词自1972年以来就已经存在,但是当前的定义可以追溯到2012年的Google。随后是Airbnb,Amazon,Ebay,Facebook,IBM,LinkedIn,Microsoft和Uber等公司的类似公告,从而导致各种行业采用知识图(KG)。因此,近年来,该领域的学术研究激增,关于KGS的科学出版物越来越多[1]。这些图是利用基于图的数据模型来有效地管理,集成和提取来自大型和多样化数据集的宝贵见解[2]。kgs是结构化知识的存储库,组织成三联的集合,被指定为𝐾𝐺=(ℎ,𝑟,𝑡)⊆×𝑅×𝐸×𝐸×𝐸,其中e代表实体集,r代表关系的集合[1]。在图中,节点表示各个层次,实体或概念。这些节点包括各种类型,包括人,书籍或城市,并与位于,生活或与之合作之类的关系相互联系。kg的本质融合了多种类型的关系,而不是仅限于单一类型。kg的总体结构构成了一个实体网络,其语义类型,属性和互连。因此,构建kg需要有关
当代基于图自编码器的模型生成的药物及其靶标的潜在表示已被证明可用于预测大型网络上的多种类型的节点对相互作用,包括药物-药物、药物-靶标和靶标-靶标相互作用。然而,大多数现有方法对节点的潜在空间进行建模,其中节点分布是刚性和不相交的;这些限制阻碍了这些方法在节点对之间生成新的链接。在本文中,我们介绍了变分图自编码器 (VGAE) 在多模态网络上建模潜在节点表示的有效性。我们的方法可以为多模态图的每种节点类型生成灵活的潜在空间;嵌入稍后用于预测不同边类型下节点对之间的链接。为了进一步提高模型的性能,我们提出了一种新方法,将捕获每种药物分子结构的摩根指纹与其潜在嵌入连接起来,然后将它们先进行解码阶段以进行链接预测。我们提出的模型在两个多模态网络上表现出了有竞争力的结果:(1)由药物和蛋白质节点组成的多图,以及(2)由药物和细胞系节点组成的多图。我们的源代码可在 https://github.com/HySonLab/drug-interactions 上公开获取。
由于动态图会随着时间的推移而演变,因此在社会关系分析、推荐系统和医学等许多领域发挥着重要作用。捕捉动态图的演变模式是至关重要的。现有的研究大多集中于限制邻居快照之间的时间平滑度,而未能捕捉到有利于图动态嵌入的急剧变化。为了解决这个问题,我们假设动态图节点的演化可以分为时间移位嵌入和时间一致性嵌入。因此,我们提出了自监督时间感知动态图表示学习框架(STDGL),通过精心设计的辅助任务从节点局部和全局连接建模的角度以自监督的方式将时间移位嵌入与时间一致性嵌入分离,进一步增强可解释图表示的学习并提高各种下游任务的性能。在链接预测、边缘分类和节点分类任务上进行的大量实验表明,STDGL 成功学习了解开的时间偏移和一致性表示。此外,结果表明,我们的 STDGL 比最先进的方法有显著的改进,并且由于解开的节点表示而具有吸引人的可解释性和可迁移性。
图是复杂结构的典型非欧几里得数据。近年来,Riemannian图表的学习已成为欧几里得学习的令人兴奋的替代方法。,里曼尼亚方法仍处于早期阶段:无论结构复杂性如何,大多数方法都会出现单个曲率(半径),由于指数/对数映射而导致数值不稳定,并且缺乏捕获基调规律性的能力。鉴于上述问题,我们提出了主题感知的Riemannian图表的问题,寻求数值稳定的编码器,以在带有无标签的多样化曲面中限制基序的规律性。为此,我们提供了一种具有生成对比度学习(Motifrgc)的新型主题Riemannian模型,该模型以一种自我监督的方式在Riemannian歧管中进行了Minmax游戏。首先,我们提出了一种新型的Riemannian GCN(D-GCN),在该GCN(D-GCN)中,我们用di-Versifed因子构建了由产品层构建多种狂热的歧管,并用稳定的内核层代替了指数/对数映射。第二,我们引入了一种主题感知的riemannian生成对比学习,以捕获构造的歧管中的主题规律性,并在没有外部标签的情况下学习主题感知的节点表示。经验结果表明了Mofrgc的优越性。
知识图谱 [39](KG)是一种用于知识表示的抽象,通过表示诸如纽约市和美国之类的实体(即节点)以及连接这些实体的二元关系,对一个或多个领域的知识进行编码;例如,纽约市和美国通过关系国家连接起来,即纽约市有美国这个国家。大多数 KG 还包含将实体与文字连接起来的关系,即来自已知数据结构的值,如字符串、数字、日期等;例如,连接纽约市和整数 1624 的关系 solved 描述实体纽约市的属性。更一般地,我们可以从双重视角看待知识图谱:将其视为有向标记多图,其中节点表示实体或文字,标记边表示实体之间或实体与文字之间的特定关系;以及一组陈述,也称为事实,具有主语-谓语-宾语三元组的形式,例如(纽约市,国家,美国)和(纽约市,定居,1624)。在下文中,我们将使用符号 (h, r, t)(头,关系,尾)来标识知识图谱中的陈述,就像在有关知识图谱嵌入的文献中经常使用的那样。知识图谱中描述的实体通常使用一组类型来组织,例如城市和国家,也称为概念、类或数据类型(当称为
基于图卷积的方法已成为图表表示学习的标准,但它们对疾病预测任务的应用仍然非常有限,这特别是在神经发育和神经发育生成脑疾病的分类中。在本文中,我们通过在图形采样中掌握聚合以及跳过连接和身份映射来引入Ag-Gregator归一化卷积网络。提出的模型通过将成像和非成像特征同时纳入图节点和边缘来学习歧视图形节点表示形式,以增强预测能力,并为基础的脑疾病的基础机械抗体提供整体观点。跳过连接使信息从输入功能直接流到网络的后期层,而身份映射有助于在功能学习过程中维护图的结构信息。我们根据两个大型数据集,自闭症脑成像数据交换(ABIDE)和阿尔茨海默氏病神经影像学计划(ADNI)进行了替补,以预测自闭症谱系障碍和阿尔茨海默氏症的异常。实验结果表明,与最近的基线相比,我们的方法的效率是几个评估指标的表现,分别在Abide和ADNI上的图形卷积网络上,分类的分类卷积网络分别获得了50%和13.56%的相关性改善。
深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。
图形生成模型由于其在各种应用中的出色表现而越来越多。但是,随着它们的应用的上升,尤其是在高风险的决策情况下 - iOS,对他们的公平性的担忧正在加剧社区内。现有的基于图的生成模型主要集中于合成少数族裔节点,以增强节点分类性能。但是,通过忽略节点生成过程,该策略可能会加剧不同亚组之间的反映差异,从而进一步损害了模型的公平性。此外,现有的过采样方法通过从相应的子组中选择实例来生成样本,从而有可能由于其代表性不足而在这些亚组中过度贴合。此外,它们无法解释亚组之间边缘分布中固有的不平衡,因此在生成图形结构时引入结构偏见。为了应对这些挑战,本文阐明了现有的基于图的采样技术可以扩大现实世界中的偏见,并提出了一种新颖的框架,公平的图形合成少数族裔过度采样技术(FG-Smote),旨在在代表不同的子组方面取得公平的平衡。具体来说,FG-Smote首先从节点repentations中删除子组信息的可识别性。随后,通过从这些亚组中的脱敏节点表示中采样来生成模拟节点的嵌入。最后,采用公平链接预测器来生成图形结构信息。在三个真实图数据集上进行的广泛实验评估表明,FG-Sote在公平性上优于最先进的基线,同时还保持了竞争性的预测性能。
对归因图的社区检测,具有丰富的语义和拓扑信息为现实世界网络分析,尤其是在线游戏中的用户匹配提供了巨大的潜力。图形神经网络(GNNS)最近启用了深度图(DGC)方法,从语义和拓扑信息中学习群集分配。但是,它们的成功取决于与社区数量有关的先验知识,由于收购的高成本和隐私问题,这是不现实的。在本文中,我们研究了与事先的社区检测问题,称为𝐾 -free社区检测问题。为了解决这个问题,我们提出了一种新颖的深层自适应模型(DAG),以供社区检测,而无需指定先前的𝐾。DAG由三个关键组件组成,即带有屏蔽属性重新构造的节点表示模块,一个社区关联读数模块以及具有组稀疏性的社区编号搜索模块。这些组件使DAG能够将非差异性网格搜索的过程转换为社区编号,即存在的DGC方法中的离散超级参数,将其转换为可区分的学习过程。以这种方式,DAG可以同时执行社区检测和端到端的社区编号搜索。为了减轻现实世界应用中社区标签的成本,我们设计了一种新的指标,即使标签不可行,也可以评估社区检测方法。在五个公共数据集和一个现实世界的在线手机游戏数据集上进行了广泛的离线实验