从生物刺激到进行poly Mer设备,第一执行器是基于电化学触发器[5]驱动的电聚合聚集膜膜以及joule的加热和湿度的变化。[6]固有的多功能性和水的加工性使聚(3,4-乙二基二苯乙烯)的使用:聚(苯乙烯磺酸盐)(PEDOT:PSS)作为活性层材料吸引人。Modarresi等人对PEDOT:PSS的文学进行了深入的讨论和理论研究。[7],已知在很大程度上取决于处理条件。[8]两个组成部分的不同性质,掺杂的PEDOT和POLYELEC-TROLYETE PSS会引起共同形态(参见图1B)具有富含PEDOT和PSS富含域的含量,并在10-40 nm范围内具有颗粒状结构。[8,9]除了需要PEDOT高电子电导率的设备外,PSS,[10]已证明了许多离子化应用。[11]后者基于允许电子和离子电荷转运的独立途径,这也表明取决于环境的湿度。[12]此外,据说基于PEDOT:带有和不带聚(二甲基硅氧烷)的PSS(PDMS)(PDMS)的底物可以通过Joule加热和湿度来启动底物。[13,14]
a。奈良科学技术学院科学技术研究生院,8916-5高山 - 哥,马萨诸塞州伊科马,奈良630-0192,日本。b。数据科学中心,奈良科学技术学院,8916-5高山 - 俄罗斯州,伊科马,奈良630-0192,日本。c。材料信息学计划,RD技术与数字化转型中心,JSR Corporation,3-103-9 TOMAN-ACHI,KAWASAKI-KU,KAWASAKI,KANAGAWA,KANAGAWA 210-0821,日本。d。精细的化学工艺部,JSR Corporation,100 Kawajiri-Cho,Yokkaichi,MIE 510-8552,日本。e。 Keio大学科学技术学院化学系,日本Kohoku-Ku 3-14-1 Hiyoshi,Kohoku-Ku,Kanagawa,Kanagawa 223-8522,日本。f。奈良科学技术学院材料研究平台中心,8916-5高山 - 俄罗斯州,伊科马,纳拉,日本,伊科马630-0192。关键词聚合物,流量合成,自由基聚合,贝叶斯优化,多物镜贝叶斯优化,苯乙烯,苯乙烯,甲基丙烯酸甲酯
Crystic®解决方案TBC010 TBC010在苯乙烯溶液中TBC010介绍Crystic®解决方案TBC010是苯乙烯中T丁基儿茶酚抑制剂的溶液。添加Crystic®解决方案TBC010将减慢所有聚酯树脂系统的geltime。对于乙烯基酯,将发现丙酮更合适。加长的延长将取决于树脂类型,以及树脂中已经包含的加速器和其他抑制剂的水平。通常,0.05%足以使通用原则的直智聚酯树脂的盖尔特倍增。我们建议用户在给大量树脂给药之前,在小样本上进行自己的测试。应用Crystic®溶液TBC010可以添加到树脂,胶衣和其他聚酯树脂中,以减慢GELTIME。配方晶体®解决方案TBC010应在使用前达到车间温度(18ºC-30ºC)。以0.05%-0.2%的水平将Crystic®溶液TBC010添加到树脂中。使用机械搅拌器剧烈搅拌至少10分钟。建议将已通过Crystic®溶液TBC010处理的树脂在使用前至少一个小时站立,以确保抑制剂已彻底溶解。
摘要:本研究的目的是通过文献计量学文献综述,在热解过程后确定聚苯乙烯螺旋霉素微粒的化学化合物含量以及其热解化学反应机制。使用傅立叶变换红外(FTIR)和气相色谱质量光谱(GC-MS)进行分析。通过将30 g的聚苯乙烯颗粒(尺寸为3000 µm)分解为105分钟,在120-190°C的范围内,在没有空气的情况下,进行了105分钟。该过程是在批处理反应器内完成的(长度x宽度x高= 44.5 cm x 35.5 cm x 25 cm),配备了一个连接到三个冷凝器(24°C)的出口。将冷凝器设置为串联,其中冷凝器1直接连接到反应器和连接器2连接的冷凝器1和3。热解会导致第一个冷凝器是一种两相液体,顶层中有褐色黄色的液体,底层中的无色和刺耳的液体。在第二和第三个冷凝器中,获得了无色和辛辣的液体。FTIR的结果表明在样品中检测到不同的化学成分。第一个,第二和第三冷凝器包含芳香族C = C键。第二和第三冷凝器具有相同的官能团,即H 2 O中的氢键,以及具有C -H弯曲烯烃的芳族官能团,这些算力也由FTIR原料所具有。通过GC-MS分析的结果表明,第二和第三个冷凝器含有苯乙烯,甲苯,乙酸甲酯,苄基环丙烷和其他苯乙烯衍生物。通过GC-MS分析的结果显示,在2-丙酮和苯甲胺化合物中发现的氧和氮的混合物。这个热解过程表明发生降解反应,其中聚苯乙烯被降解为小片段,例如苯乙烯和其他衍生物,例如苯,甲苯和甲苯和苯基苯。然而,由于存在氧和氮,热解是不完整的。这项研究对提供有关热解过程的想法和信息产生了有益的影响。这项研究还提供了用于在传统废物处理基础设施难以到达的领域的热解过程中的想法。本研究还旨在支持可持续发展目标(SDG)中的当前问题。
为了提高全小分子 (ASM) 有机光伏 (OPV) 共混物的稳定性,一种名为苯乙烯-乙烯-丁烯-苯乙烯 (SEBS) 的绝缘聚合物作为形态稳定剂被应用于小分子 BM-ClEH:BO-4Cl 的主体系统。少量添加 SEBS(主体溶液中 1 mg/ml)可显著提高 T 80 值 15000 小时(外推),超过无掺杂(0 mg/ml)和重掺杂(10 mg/ml)对应物(900 小时、30 小时)。这种工业上可用的聚合物不会影响活性层的材料可重复性和成本效益,其中功率转换效率 (PCE) 可以很好地保持在 15.02%,对于非卤素溶剂处理的 ASM OPV 来说,这仍然是一个不错的值。形态学和光物理表征清楚地表明了 SEBS 在抑制供体分子降解和混合膜结晶/聚集重组方面的关键作用,从而有效地保护了激子动力学。这项工作对 ASM 系统稳定性给予了有意义的关注,采取了一种智能策略来抑制薄膜形态的退化,并全面了解了器件性能下降的机制。
苯乙烯-马来酸酐共聚物 (SMA) 聚酰胺 (PA) (热塑性) 聚氨酯 (PU R) 热塑性聚酯 聚对苯二甲酸丁二醇酯 (PBT) 聚对苯二甲酸乙二醇酯 (PET) 聚对苯二甲酸丙二醇酯 (PTT) 聚萘二甲酸乙二醇酯 (PEN) 液晶聚合物 (LCP) 聚缩醛 (POM) 聚苯醚 (PPE) 热塑性弹性体 (TPE) 热塑性聚烯烃弹性体 (TPE-O) 热塑性聚烯烃硫化橡胶 (TPE-V) 热塑性聚酯弹性体 (TPE-E) 苯乙烯嵌段共聚物 (TPE-S) 热塑性共聚酰胺弹性体 (TPE-A) 热塑性聚氨酯 (TPE-U) 3.1.10 含氟聚合物 聚四氟乙烯 (PTFE) 聚偏氟乙烯 (PVD F) ETFE 聚乙烯氯三氟乙烯 (EC FTE) THV 3.1.11 其他热塑性塑料 脂肪族聚酮 热固性树脂 3.2.1 不饱和聚酯 (UP 树脂) 3.2.2 酚醛树脂 - 苯酚甲醛聚合物 (PF) 3.2.3 环氧树脂 3.2.4 (热固性)聚氨酯 (PUR) 3.2.5 其他热固性塑料 增强材料 3.3.1 玻璃纤维和玻璃毡 玻璃增强热塑性塑料 R-RIM 和 S-RIM 3.3.2 其他纤维 天然纤维 芳族聚酰胺纤维 碳纤维 金属纤维 颗粒增强材料 纳米复合材料
由于其多功能性,纳米材料已被深入探索为各种聚合物材料的阻燃剂,但通常无法显着增加极限氧指数(LOI)和垂直燃烧的UL-94等级,因此无法满足工业需求(因此LOI> 27.0%> 27.0%和UL-94 V-94 V-0评分)。在此,我们制造了一种铜/磷掺杂的G-C 3 N 4(CE/P-CN)纳米杂交,作为丙烯腈 - 丁二烯 - 苯乙烯 - 苯乙烯(ABS)的多功能高效火势。CE/P-CN纳米片对ABS具有强化作用,其中10 wt%将ABS/(CE/P-CN)的拉伸强度提高了33.8%。同时,ABS/(CE/ P-CN)纳米复合材料相对于Virgin ABS显示出明显增强的高温稳定性和碳化性的pureporter。ce/p-CN同时改善了由于G-C 3 N 4纳米片的屏障效应以及石和磷的催化碳化效应,因此改善了ABS的抗点燃性,阻燃性和烟雾抑制。值得注意的是,增加10 wt%Ce/p-CN的LOI和UL-94评级分别为28.6%和V-0,表明其高火效率很高。因此,高火质效率和多功能性使CE/P-CN能够优于先前的ABS火焰阻燃剂。这项工作为开发高效G-C 3 N 4纳米片的开发提供了一种新的策略,该纳米片具有改善的机械鲁棒性和阻燃性,并显示出广泛的工业前景。
空间动力学实验室正在为 SmallSats 开发一种原型“绿色”混合原型推进系统。该系统基于犹他州立大学专利的高性能绿色混合推进 (HPGHP) 技术。HPGHP 利用 3D 打印丙烯腈丁二烯苯乙烯 (ABS) 独特的介电击穿特性,允许重新启动、停止和重新点火。HPGHP 使用气态氧 (GOX) 作为氧化剂时工作最可靠,但当用高测试过氧化氢 (HTP) 代替时,会出现点火可靠性和延迟问题。这一缺陷是由于 HTP 的高分解能垒造成的。测试表明,氧化铝上的铂等贵金属催化剂可有效分解 90% 的单推进剂形式的 HTP,但分解释放的能量不足以可靠地点燃混合火箭。本研究报告了一种用于混合火箭的非催化热点火方法。使用气态氧预引线引发燃烧,一旦发生完全 GOX 点火,HTP 就会被引入热燃烧室。GOX/ABS 燃烧产生的残余能量会热分解 HTP 流,而游离氧可实现完全 HTP 混合燃烧。本文介绍了使用 90% HTP 和丙烯腈丁二烯苯乙烯 (ABS) 和聚甲基丙烯酸甲酯 (PMMA) 作为燃料的 0.5、1.0 和 5 N 推力水平的原型系统的设计选项和测试结果。
摘要:在60-70°C的铜催化铜催化的“通过电子传输再生”型苯乙烯(Arge Atrp)的铜催化的“激活剂”中获得异常的聚苯乙烯凝胶,并使用Ascorbic Acid Acid Acid Acid-Na 2 CO 3作为降低的系统和EtoAc/etoAc/Etoh as solvent组合。由于没有将分支或交联试剂添加到反应混合物中,因此排除了它们的原位形成,因此结果是显着的。在现象的起源上,异常的PS分支需要一个通用的双功能引发剂,并且在机械上与双功能大型引导者之间的终止反应结合。实际上,在导致Cu II构建或增加链聚合速率的反应条件下,分支/交联现象失去强度甚至消失。温度也是一个关键变量,因为对于高于90°C的温度未观察到分支。我们认为,凝胶化的途径始于双功能引发剂的苯乙烯的受控链聚合,很快由于终端单元的根部耦合而导致的阶梯增长聚合。反应混合物中链数和自由基的逐渐减少应使剩余长链的C -Cl末端之间的分子内耦合越来越可能,从而产生了多卡宁网络。
Description R-Tech®是一种设计的刚性隔热材料,由高级聚合物层压板面部的优质封闭,轻质和弹性扩展的聚苯乙烯(EPS)组成。r-tech可以提供工厂粘附的金属式脸部,白色面孔或两者的组合。r-tech与我们的绝缘品牌绝缘相同,并且超过了或超过ASTM C578的全面强度,弯曲强度,尺寸稳定性和吸水要求,刚性,细胞多苯乙烯热绝缘的标准规范。R-Tech是一种能量Star®合格的绝缘材料,可以为LEED®学分做出贡献。