摘要:了解酶机制对于揭示复杂的生命分子机制至关重要。在这篇综述中,我们概述了计算酶学领域,重点介绍了控制酶机制的关键原理,并讨论了当前面临的挑战和有希望的进展。多年来,计算机模拟已成为酶机制研究中不可或缺的一部分,实验和计算探索的结合现已成为深入了解酶催化的整体方法。许多研究已经证明了计算机模拟在表征各种酶的反应途径、过渡态、底物选择性、产物分布和动态构象变化方面的强大功能。然而,在研究复杂的多步反应、大规模构象变化和变构调节的机制方面仍然存在重大挑战。除了机制研究之外,计算酶建模已成为计算机辅助酶设计和合理发现用于靶向治疗的共价药物的重要工具。总体而言,酶设计/工程和共价药物开发可以从我们对酶详细机制的理解中受益匪浅,例如计算研究揭示的蛋白质动力学、熵贡献和变构效应。预计这种不同研究方法的融合将继续下去,在酶研究中产生协同效应。本综述通过概述不断扩展的酶研究领域,旨在为未来的研究方向提供指导,并促进这一重要且不断发展的领域的新发展。■ 简介
键长AG1-C1 2.054(10)C1-K1和3,468(11)AG1-O1 2.070(11)K1-N1 IV 2.823(9)K1-N1 2.824(9)K1-N1(9)K1-N1和2.906和2.906(9)K2-N1 2.868(8)2.868(8)O1-H1 0.84(10)和1 N.84(10)和1.2.054(10) 2,906(9)AG1-O1-OII 2.070(11)K1-N1 V 2.823(9)键角N1-C1-AG1 175.6(10)N1 VII-K1-K1-K2 42.05(16)N1-C1-C1-K1-K2 51.K2 51.8(6)N1 I -K1 I -K1-K1-K1-K2 89。-k1-ag1-k1-K1-K1-K1-K1-K1-K2 125.0-K2 125.0-K2 125.0( 94.4(2)N1-C1-K1和51.7(7)C1 VII -K1-K2 51.32(17)AG1-C1-K1和126.0和126.0(4)C1 VI -K1-K1-K2 119.9(2) 83.8(2)C1 II -AG1-O1 110.5(3)N1 XII -K2-N1 96.2(2)O1-AG1-O1 III 116.2(11)C1-K2-K1 K1 XI。 139.0(9)N1 IV -K1-N1 V 98.4(2)C1-N1-K2 110.1(8)N1 IV -K1-N1 VI 83.9(3)K1-N1-K1 I 96.3(2)N1-K1-K1-K1-C1和98.8(3)K2-N1-K1和98.8(3)K2-N1-K1和95.2(3)n5.2(3)vi.1 v-1 v-k1(3)
4 5 6 1 D e partme n t o f C he mic a l and Bi o lo g ic a l E ng i nee ri ng , N o rt h w e st e r n U n iv e rsity, 21 4 5 7 Sh e ri da n Road , T e c hno l og ic a l I n stit u t e E 136 , Ev an st on , I L , 60208 , USA 8 9 2 Interdiscipli na ry Bi o l og ic a l Sci ence s Gr adua t e Pr og r a m, N o rt h w e st e r n U n iv e rsity, 2205 10 Tech Drive, 2 - 100 H ogan H a ll, Eva n st on , I L , 60208 , USA 11 12 3 C e nter for Sy n t he tic Bi o l og y, N o rt h w e st e r n U n iv e rsity, 2145 S he ri dan R oad , 13 Technologic a l I n stit u t e B 486 , Ev an st on , I L , 60208 , USA 14 15 4 These aut ho rs c on tri bu t ed equa ll y t o t he w o rk 16 17 Autho r Em a il Add resses : 18 19 C h arl o tt e H A b r aha ms on : c ab r aha ms on@u .no rt h w e st e r n。edu 20 21 brett j pal me r o:b r e tt pa lm e r o2025 @ u。no rt h w e st e r n。edu 22 23 n o l an w k enned y:no l an k enned y2 019@u。no rt h w e st e r n。edu 24
在某些非生理条件下,在生物技术过程中使用酶的一般局限性是两个关键量,酶活性和稳定性之间的复杂相互作用,其中一种的增加通常与另一个关键的减少有关。确切的稳定性交易是为了使酶具有完全功能,但是其不同的蛋白质区域的重量及其对环境条件的依赖性尚未阐明。为了促进此问题,我们使用了我们最近开发的形式主义来有效地识别蛋白质结构中的稳定性和弱点区域,并将其应用于具有已知的实验结构和催化位点的大型球状酶。我们的分析表明,以催化区为中心的自由能补偿的惊人振荡模式。的确,相对于稳定性,催化残基通常不是最佳的,但是催化位点周围第一个壳的残基平均是稳定性强度,因此对于这种缺乏稳定性而言。第二壳中的残留物再次较弱,依此类推。在所有酶家族中,这种趋势都是一致的。它伴随着类似但不太明显的残留物保守模式,跨进化。此外,我们分别分析了冷和热适应的酶,并强调了稳定强度和劣势的不同模式,这些模式可洞悉催化速率在冷环境中的长期概率。通过深诱变扫描获得的我们的稳定性和保护结果与实验性数据的成功比较,使我们提出了改善催化活性的标准,同时保持酶稳定性,这是酶设计的关键目标。
酪氨酸酶是人体内控制黑色素生成的限速酶,黑色素生成过量可导致多种皮肤病。本文利用光谱、分子对接、抗氧化分析和色谱分析等方法研究了根皮素对酪氨酸酶的抑制动力学及其结合机制。光谱结果表明根皮素通过多相动力学过程以混合型方式可逆地抑制酪氨酸酶,其IC 50 为169.36 m mol/L。结果表明根皮素对酪氨酸酶固有荧光有较强的猝灭能力,主要通过静态猝灭过程,表明形成了稳定的根皮素-酪氨酸酶复合物。分子对接结果表明根皮素的主要构象与酪氨酸酶活性位点的门户结合。此外,抗氧化试验表明,根皮素具有强大的抗氧化能力,能够像抗坏血酸一样将 o-多巴醌还原为 L-多巴。有趣的是,光谱和色谱分析结果表明,根皮素是酪氨酸酶的底物,但也是抑制剂。提出了可能的抑制机制,这将有助于设计和寻找酪氨酸酶抑制剂。© 2019 由 Elsevier BV 出版
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
- Fabry病(FD)是由GLA基因突变引起的常染色体隐性溶酶体储存障碍。它的特征是由于酶α-半乳糖苷酶的活性不足或活性不足而导致未基因糖果脂的溶酶体积累。表型从“经典”表型(随儿科发作和多器官介入)到以后发作(主要是心脏表型)。曾经被认为女性是无症状的载体,但现在已经知道他们可以在以后的生活中发展出多种症状,而不是其纯合男性。最常见的症状包括听力丧失,心肌微血管缺血,功能障碍,肥厚性心肌病,瓣膜性不足,胃肠道症状,胃肠道症状,低人病,温度和运动不耐受性,血管张力和自动疾病的失调,肾上腺疾病的疾病效率增加,阻塞性肾脏疾病效果,阻塞性肾脏疾病效率增加,肾脏不适,肾脏疾病效果,肾脏疾病的效率增加,阻塞性肾脏疾病,肾脏不适事故和心肌梗死。- 美国医学遗传学学院2011年指南,法布里氏病在男性和女性中得到不同的证实。雄性应首先测试,以降低外周白细胞或皮肤成纤维细胞中的α-半乳糖苷酶活性。如果酶活性测试随着活性降低而恢复,则通过基因检测验证疾病,该疾病表明患者患有GLA基因突变。酶活性通常与杂合雌性的疾病症状或严重程度不相关。- 酶替代是FD的护理标准。Fabrazyme已批准2岁及以上的Fabry病患者。因此,当确认女性患者疾病时,可以免除酶活性测试,并将基因检测作为初始诊断成分完成。Elfabrio被批准用于确认的Fabry疾病的成年患者。- 关于何时应启动酶替代疗法(ERT)的统一建议。通常,在诊断时,应在预防性ERT上开始出现经典疾病的雄性,即使他们没有出现症状。经典疾病对血清测定法(<正常平均值的1%)几乎没有酶活性,如上所述。对于患有非典型疾病的女性携带者和男性,应保持ERT,直到患者有症状为止。没有数据显示这些患者的预防疗法的好处,有些人不会出现任何疾病表现。