ABS 是洗涤剂配方中使用的第一种表面活性剂,但由于其分子结构是支链的,很难生物分解,使 ABS 成为一种对环境有毒的化合物。本研究旨在去除 MBAS 表面活性剂,采用植物修复和过滤方法相结合的方式,通过优化 pH 值、接触时间、植物类型和滤料等操作因素,去除洗涤剂废水中的表面活性剂 (MBAS) 化学需氧量 (COD)。选择了水浮莲 ( Pistia stratiotes ) 和凤眼蓝 ( Eichhornia crassipes ) 作为植物种类,以硅质活性炭为滤料。将水浮莲和凤眼蓝与洗涤剂废水样品一起放入 10 升反应器中培养 6 天和 12 天。使用时将滤料放入反应器,并进行曝气。每次试验中,COD 降低效率为 81.73%,表面活性剂降低效率为 99.42%,这被认为是由于植物的吸附和过滤过程所致。水生莴苣 ( Pistia stratiotes ) 植物在所有评价的品质中具有最大的吸附能力,根部表面活性剂含量为 27543.24 (mg/kg MBAS),而水葫芦植物仅吸收了 2597.95 (mg/kg MBAS)。
摘要背景和目的:睡眠障碍是儿童期最常见的疾病之一。考虑到传统儿童睡眠障碍治疗方法在安全性和有效性方面的缺陷,并基于波斯医学文献和最近的动物和临床研究结果,本研究旨在评估外用莴苣籽油对这些患者的影响。方法:该研究是一项针对 3-6 岁睡眠障碍儿童的双盲随机对照试验。他们被随机分配接受外用安慰剂油和可乐定胶囊或莴苣籽油和安慰剂胶囊,持续三周。莴苣籽油采用冷榨法制备。干预前后使用波斯语版“BEARS”儿科睡眠问卷。使用 SPSS 软件(20 版)进行数据分析,p<0.05 被认为具有统计学意义。结果:研究结束时,72 名患者中有 67 名完成了研究。与对照组相似,干预组儿童在就寝时间问题(p<0.001)、白天过度嗜睡(p=0.003)、夜间觉醒(p=0.008)以及睡眠规律性和持续时间问题(p<0.001)方面有显著改善;然而,两组的打鼾情况无显著变化。结论:在儿童前额和颞区局部使用莴苣籽油可被视为一种安全有效的睡眠障碍治疗方法。然而,有必要进行样本量更大、随访时间更长、使用客观结果测量的进一步研究。关键词:草药;综合医学;莴苣;波斯医学;睡眠障碍引用:Ranjbar M、Afsharypuor S、Shakibaei F、Mazaheri M。局部使用莴苣(Lactuca sativa L.)籽油对儿童睡眠障碍的影响:一项随机双盲对照试验。Res J Pharmacogn。 2020;7(3): 47-54。
关键信息来自多种来源物种的 GRF-GIF 嵌合蛋白可增强野生和栽培生菜的体外再生。此外,它们还可增强多种生菜的再生,包括奶油生菜、长叶莴苣和卷叶莴苣。摘要植物体外再生的能力已被用于组织培养系统中的植物繁殖、植物转化和基因组编辑。体外再生的成功通常取决于基因型,并且仍然是农杆菌介导的转化及其在某些作物品种改良中的应用的瓶颈。操纵在植物发育中起关键作用的转录因子,如 BABY BOOM、WUSCHEL 和生长调节因子 (GRF),已经提高了多种植物的再生和转化效率。在这里,我们比较了来自多个物种的 GRF–GIF 基因融合对提高四种野生和栽培莴苣(Lactuca spp. L.)基因型的再生效率和发芽频率的效果。此外,我们表明,与对照相比,具有突变 miRNA 396 结合位点的 GRF–GIF 可提高再生效率和发芽频率。我们还提出了一种共转化策略,以提高转化效率和恢复含有目的基因的转基因植物。该策略将增强其他莴苣基因型和菊科其他作物的转基因植物的恢复。
CRISPR/Cas9 基因组编辑系统的效率在许多作物中仍然有限。利用强启动子来提高 Cas9 的表达水平是提高编辑效率的常用方法。然而,这些策略也增加了脱靶突变的风险。在这里,我们开发了一种新策略,利用内含子介导增强 (IME) 辅助的 35S 启动子来驱动 Cas9 和 sgRNA 在单个转录本中,通过适度增强 Cas9 和 sgRNA 的表达来提高编辑效率。此外,我们开发了另一种策略来富集高表达 Cas9 /sgRNA 的细胞,通过共表达发育调控基因 GRF5 ,这已被证明可以提高转化效率,并且来自这些细胞的转基因植物也表现出增强的编辑效率。该系统将莴苣(Lactuca sativa)中三个目标的基因组编辑效率从 14–28% 提高到 54–81%,且脱靶编辑效率没有增加。因此,我们建立了一种新的基因组编辑系统,该系统大大提高了目标编辑效率,且没有明显增加脱靶效应,可用于表征莴苣和其他作物中的目标基因。
利用雄性不育性进行 F 1 杂交的新育种方法将为自花授粉作物莴苣育种开辟一个令人兴奋的新领域。雄性不育性是 F 1 杂交育种的一个关键性状。绘制利用雄性不育性的致病基因图谱至关重要。“CGN17397”的 ms-S 雄性不育 (MS) 基因通过 ddRAD-seq 定位到连锁群 (LG) 8,并使用两个 F 2 群体将其缩小到两个标记之间。该区域跨越约 10.16 Mb,其中根据莴苣参考基因组序列(版本 8 来自“Salinas”)注释了 94 个基因。 MS 系“CGN17397-MS”和雄性不育 (MF) 系“CGN17397-MF”的全基因组测序表明,只有一个基因在 Lsat_1_v5_gn_8_148221.1 区域有所不同,该基因是酰基辅酶 A 合成酶 5 (ACOS5) 的同源物,并且在 MS 系中被删除。据报道,ACOS5 是花粉壁形成所必需的,并且 ACOS5 的无效突变体在某些植物中完全是雄性不育的。因此,我得出结论,指定为 LsACOS5 的 Lsat_1_ v5_gn_8_148221.1 是 ms-S 基因座的生物学上合理的候选基因。利用 LsACOS5 的结构多态性,开发了 InDel 标记来选择 MS 性状。这里获得的结果为生菜的基因雄性不育提供了有价值的信息。
通过修饰调节维生素和抗氧化剂产生的关键基因,研究人员能够将β-胡萝卜素水平提高2.7倍,从而提高了其作为维生素A的先驱作用,这对于视力,免疫功能和皮肤健康至关重要。Zeaxanthin是一种重要的抗氧化剂,有助于保护眼睛免受蓝色光损伤和与年龄相关的黄斑变性,被提高到莴苣中通常未发现的水平。研究人员还达到了抗坏血酸(通常称为维生素C)的6.9倍,增强免疫系统并增强铁吸收。
苏尼塔·威廉姆斯(Sunita Williams),国际空间站的指挥官,矛头植物栖息地-07,一项关于在微重力中生长的长叶莴苣的研究。该实验探讨了水分配如何影响空间的植物生长,从而解决了诸如营养递送和根源发育之类的挑战。这项研究对于未来的月球和火星任务至关重要,为可持续太空耕作铺平了道路。资深宇航员正在领导着一项突破性的农业实验,试图在微重力中生长植物。空间站的指挥官威廉姆斯(Williams)正在不同的水条件下培养“彻底的” romaine生菜。
虽然这些条件是理想的,但许多城市园丁的面积很小,其地点不太理想地种植蔬菜。然而,仍然可以通过修改某些文化习俗和种植的农作物的类型来种植菜园。可以使用带有浅色阴影的区域,例如在幼树下,在成熟的树木下具有高蕾丝檐篷或明亮,通风的地方,每天仅接收一到两个小时的阳光。有几种蔬菜会在这些条件下生长,包括豆类,甜菜,西兰花,卷心菜,花椰菜,木草,kohlrabi,叶莴苣,豌豆,豌豆,土豆,萝卜,萝卜,神ra虫,菠菜和萝卜。的大小和可收获的植物部分的形式将减少取决于到达植物的光量。夏季炎热时期的下午阴影可能有益于水果蔬菜。
摘要:这项研究评估了杂种sturgeon(Acipenser Gueldenstaedtii brandt×Acipenser baeri Brandt)的生产中的鱼类废水的影响长叶叶。“ Elizium”)。 经过测试的组合是富含三个微生物联盟之一的农场废水,鱼类废水,以及补充矿物质的鱼类废水。 在补充矿物营养素的耕种中,从耕种的废水组合中获得了romaine生菜植物的最佳生长参数。 鱼类农场废水的应用和有益的微生物伴侣积极地影响了生菜叶的新鲜重量和每植物的叶子数量。 然而,用补充矿物质的废水喂养的植物的特征是叶尖燃烧的最强症状和最低的商业价值。 相比之下,仅以鱼类废水或带有微生物的废水为食的植物的特征是高,相似的商业价值。 在施用矿物质剂量增加后,有证据表明,在水培养莴苣培养中参与营养循环的微生物活性更大。 接种液中的微生物结合和矿物质的应用显着增加了细菌的数量和活性。接种后7、14和21天。“ Elizium”)。经过测试的组合是富含三个微生物联盟之一的农场废水,鱼类废水,以及补充矿物质的鱼类废水。在补充矿物营养素的耕种中,从耕种的废水组合中获得了romaine生菜植物的最佳生长参数。鱼类农场废水的应用和有益的微生物伴侣积极地影响了生菜叶的新鲜重量和每植物的叶子数量。然而,用补充矿物质的废水喂养的植物的特征是叶尖燃烧的最强症状和最低的商业价值。相比之下,仅以鱼类废水或带有微生物的废水为食的植物的特征是高,相似的商业价值。在施用矿物质剂量增加后,有证据表明,在水培养莴苣培养中参与营养循环的微生物活性更大。接种液中的微生物结合和矿物质的应用显着增加了细菌的数量和活性。接种后7、14和21天。
摘要:Trichostatin A(TSA)是一种代表性的组蛋白脱乙酰基酶(HDAC)抑制剂,该抑制剂通过调节细胞中的染色质重塑来调节表观遗传基因的表达。调查TSA对染色质DE稳态的调节是否会影响Cas9蛋白 - 蛋白 - 核核糖核蛋白(RNP)的效率提高,从植物细胞中检查了基因组编辑的基因组,使用生菜和烟草原子量进行了多种浓度,在几次浓度的TSA治疗后(tsa)(0.1)(0.1)(0.1和10,0.1)。RNP从原生质体递送。有趣的是,在莴苣原生质体中,TSA处理中SOC1基因的indel频率是DMSO处理的3.3至3.8倍。尽管没有太大差异,但糖基因原生质体中SOC1基因的indel频率的增加发生在浓度依赖性的方式中。类似于生菜,TSA在PDS基因组编辑期间使用烟草原生质体以浓度依赖性方式将indel频率提高了1.5至1.8倍。MNase测试清楚地表明,使用TSA处理的染色质可及性高于DMSO治疗的染色质。此外,TSA处理显着提高了生菜原生质体的组蛋白H3和H4乙酰化水平。QRT-PCR分析表明,通过TSA处理,增加了细胞分裂相关基因的表达(LSCYCD1-1,LSCYCD3-2,LSCYCD6-1和LSCYCU4-1)。这些发现可能有助于提高CRISPR/CAS9介导的基因组编辑的效率。此外,这可以应用于使用带有植物原生质体的CRISPR/CAS9系统开发有用的基因组编辑的作物。