星形胶质细胞是大脑中的关键细胞,负责为大脑毛细血管和血脑屏障提供支持,调节离子和营养物质流入大脑,并与小胶质细胞一起参与大脑的炎症反应。星形胶质细胞这个名字源于这些细胞的形态,因为它们的分支类似于星星。星形胶质细胞的形态和分支会因疾病而发生变化,因此,对分支细胞过程的数量、长度和复杂性、细胞直径和其他特征进行成像和评估可以揭示这些细胞在不同条件下暴露后的功能或功能障碍的信息。我们的实验室从整个大鼠脑中分离星形胶质细胞、小胶质细胞和其他神经血管细胞,以研究它们对缺氧缺血性损伤等刺激的反应。分离后,我们将培养的细胞暴露于损伤条件下,然后评估暴露于损伤如何影响细胞与纳米粒子的相互作用。这让我们初步了解了同样在我们实验室中配制的纳米治疗剂如何与患病环境中的靶细胞相互作用。图中是一组培养的星形胶质细胞(白色),与小胶质细胞(洋红色)共培养,并用共聚焦显微镜成像。
使用机械计算机消化模型 (MDM) 来模拟营养物质的消化、吸收、饥饿、饱腹和食欲信号以及未吸收营养物质向结肠的输送。该模型基于文献中报道的许多关于消化酶水解营养物质的研究和生理研究,这些研究描述了通过神经和激素肠道信号调节消化,通过调整口腔、胃和小肠的运输率、消化液分泌和吸收率。应用 MDM 给出了基于机制的消化、生物利用度和预期食物摄入量的预测。本出版物重点介绍蛋白质消化以及到达结肠的未吸收蛋白质和脂质物质。尤其是食物来源的蛋白质物质到达结肠时,人们对此持怀疑态度,因为研究表明,大量的蛋白质物质会改变肠道微生物群的组成(菌群失调),促进能够发酵蛋白质的细菌种类的生长(蛋白质腐败),从而导致有害代谢物的释放,如氨、胺和硫化物。MDM 用于预测多种食物和消费参数对到达结肠的蛋白质物质数量的影响,从而可以设计出降低有害蛋白质腐败和微生物群菌群失调风险的策略。
摘要通过在营养较差的环境中提供和回收必需营养物质,海绵微生物组基础宿主功能。基因组数据表明,碳水化合物降解,碳固定,氮代谢,硫代谢和补充B-维生素是中央微生物功能。然而,很少探索海绵共生途径的基因组潜力的验证。为了评估宏基因组预测,我们测序了三个常见的珊瑚礁海绵的宏基因组和元文字:ircinia ramosa,ircinia ramosa,ircinia microconulosa和phyllospongia foliascens。多种碳水化合物活性酶通过猪杆菌,细菌和氰基菌群共生菌表达,这表明这些谱系在吸收溶解的有机物中具有核心作用。在所有海绵中都观察到了碳固定和多硫化合物转化的整个途径的表达。厌氧氮代谢(反硝化和硝酸盐还原)的基因表达比有氧代谢(硝酸盐)更常见,其中只有I. ramosa微生物组表达了硝化途径。最后,虽然B-VITAMIN的生物合成途径的表达很常见,但其他转运蛋白基因的表达受到了限制。总的来说,我们强调了元基因组和
摘要:在同一环境中共存的2亿年以上,硅藻 - 细菌相互作用演变出来。在这个时间范围内,他们建立了复杂而异质的人群和财团,创建了多个细胞对互联或拮抗性相互作用的网络,用于营养交流,交流和防御。硅藻与细菌之间最扩散的相互作用类型是基于双赢的关系,在这种关系中,硅藻释放出的有机物和营养物质受益于硅藻,而最后一次依靠细菌来供应营养素,它们无法产生,例如as as as as as as as as Vitamins and Nitrogen。尽管在硅藻的进化史上,diato m – b acteria相互作用的重要性,尤其是在构建海洋食品网和控制藻华的过程中,但研究它们的分子机制仍然很糟糕。本综述旨在介绍有关硅藻 - 细菌相互作用的综合报告,说明了到目前为止所述的不同相互作用以及两组生物体之间交流和交流所涉及的化学提示。我们还讨论了那些迷人的海洋微生物网络中涉及的分子和过程的潜在生物技术应用,并提供有关揭示硅藻 - 细菌相互作用的分子机制的新方法的信息。
在多磷酸盐肥料中的农业用途,链式聚合物中存在P的一半至四分之三。剩余的P(正磷酸)可立即用于植物摄取。聚合物磷酸盐链主要被土壤微生物和植物根产生的酶分解为简单的磷酸分子。某些多磷酸盐将在没有酶的情况下分解。在潮湿,温暖的土壤中,酶活性更快。通常,一半的聚磷酸化合物在一两个星期内转化为正磷酸盐。在凉爽和干燥的条件下,转换可能需要更长的时间。由于多磷酸盐肥料均包含正磷酸盐和多磷酸盐的组合,因此植物能够非常有效地使用该肥料来源。大多数含P的液化剂中含有多磷酸铵。液化肥料通常用于生产农业,但并未被房主广泛使用。流体对于农民来说很方便,因为它们可以很容易地与许多其他营养物质和化学物质混合在一起,并且每滴液体都是完全相同的。在大多数情况下,决定使用干燥或液体肥料的决定是基于营养,肥料处理偏好和现场实践的价格,而不是重大的农艺差异。
预计到 2050 年,世界人口将达到 96 亿,在满足日益增长的优质蛋白质需求的同时为子孙后代保护自然资源,面临着巨大挑战。渔业可以通过提供动物蛋白、创造就业机会和促进经济增长,在应对这一挑战中发挥关键作用。生物絮凝技术 (BFT) 代表一种高度先进的水产养殖方法,其中营养物质在养殖系统中不断循环和再利用,从而最大限度地减少或消除了水交换的需要。BFT 是一种生态友好型方法,通过控制水中的碳和氮来利用原位微生物蛋白质生产。生物絮凝是指水中的悬浮生长物,由活的和死的颗粒有机物、浮游植物、细菌、原生动物和细菌的食草动物组成。它既是养殖生物的食物资源,也是一种水处理解决方案。该系统又称为活性悬浮池、异养池或绿汤池。生物絮凝池的科学建造是生物絮凝养鱼系统絮体和鱼的产量和生产力的重要决定因素。因此,在实施生物絮凝养鱼时,应特别注意生物絮凝池的科学建造。
https://doi.org/10.5281/zenodo.14006030 摘要。列出了绿洲中散布的草灰色土壤遗传层中腐殖质和养分供应水平,微生物的分布、数量和质量随季节的变化,以及它们生存所需的营养物质、碳、氢、氮、磷、钾和其他大量微量元素。耕地和底土中腐殖质的含量差异很大,最高值为1.01-1.45%,全氮0.087-0.126%,磷-0.625-0.743%。钾1.25-2.0%,磷、钾和氮的移动形式很少。舒尔钦区灌溉草甸灰土、灰草甸土、草甸土0-50厘米土层腐殖质储量定量指标在短时间内波动为60.90吨/公顷,氮为5.29吨,磷为上层0-30厘米土层3120吨,钾为8400吨,测定了不同盐度的常见盐和离子的数量,盐度取决于土壤气候、经济和生活条件。发现大量微生物与过去灌溉的弱盐和中度盐渍土相对应。上层微生物丰富,腐殖质、氮和氧气供应充足,下层微生物数量减少。发现微生物活动在秋季和春季随季节增加,夏季减少。
数字地形分析 (DTA) 包括一组使用数字高程模型 (DEM) 来模拟各种尺度的地球表面过程的工具。DEM 及其衍生产品是数字地形模型 (DTM) 的更大集合的一部分,用于各个领域,以模拟能量和物质在表面的流动。DTM 在水文学家工具包中的普遍性导致地形属性(例如坡度和上坡贡献区域)被广泛使用,以表征水和相关营养物质在景观中的流动方式。计算地形属性的算法现在已被编入所有商业地理信息系统 (GIS) 软件(例如 ArcGIS、Idrisi),用户只需按一下按钮即可绘制潜在地表水文流模式。虽然派生图层总是看起来很刺激,但现场水文学家经常提出这样的问题:DTM 通常只是有趣的空间模式,与预测实际水文行为没有太大关系吗?本文通过讨论 DTA 对 21 世纪森林水文学从业人员的相关性,批判性地回答了这个问题。自从提出了早期的集水区降雨径流理论(Horton 1945 ;Hewlett 和 Hibbert 1967 )以来,人们就利用地形信息来更好地了解集水区的水文功能。然而,在桌面计算出现之前,集水区的面积、长度、周长和地势比(最大值
KRAS 突变是与癌症相关的最常见基因突变之一,约占所有肿瘤的 25%,尤其是胰腺癌、肺癌和结直肠癌。突变型 KRAS 长期以来被认为是一种无法用药的靶点,多年来阻碍了直接针对 KRAS 的进展,而利用 KRAS 突变细胞转变的代谢行为将药物靶向递送到细胞中可能提供另一种机会。巨胞饮作用是一种非选择性液相内吞途径,研究发现巨胞饮作用是 KRAS 驱动肿瘤的一种代谢特征,在从细胞外液中获取营养物质方面发挥着关键作用。通过巨胞饮作用,KRAS 突变癌细胞可以吸收各种药物递送系统,利用巨胞饮作用将治疗剂递送到 KRAS 突变肿瘤细胞内正在成为一种新的药物递送方法。在本文中,我们总结了研究 KRAS 突变诱导的巨胞饮作用的癌症生物学研究,回顾了利用巨胞饮作用增强进行 KRAS 突变癌细胞选择性药物输送的最新研究,并讨论了该策略的潜在机会、挑战和陷阱。
摘要:该叙述性评论综合了有关抗炎饮食模式的当前证据及其对精神疾病和神经退行性疾病患者的潜在益处。慢性低度炎症越来越被认为是这些疾病病因和进展的关键因素。审查研究了饮食成分和食品组的抗炎和神经保护特性的证据,重点是全食,而不是特定的营养物质或补充剂。表现出潜在好处的关键饮食成分包括水果和蔬菜(尤其是浆果和绿叶蔬菜),全谷物,豆类,富含omega-3的脂肪鱼,坚果(尤其是核桃),橄榄油和发酵食品。这些食物通常富含抗氧化剂,饮食纤维和生物活性化合物,可帮助调节炎症,支持肠道健康和促进神经保护。相反,超处理的食物,红肉和含糖饮料可能有害。基于此证据,我们设计了大脑抗炎营养(脑)饮食。这种饮食的机制包括调节肠道菌群和肠道轴,调节炎症途径,氧化应激的减少以及促进神经可塑性。大脑饮食表现出有望是管理心理和神经退行性疾病的帮助。