金黄色葡萄球菌是世界上最致命的病原体之一,这种生物体的抗性菌株的升高导致许多威胁生命的医疗状况。这种革兰氏阴性菌可能会引起一系列疾病,从轻微的皮肤感染到严重感染,例如毒性休克综合征或心内膜炎,并且在美国导致的死亡人数比任何其他耐药性病原体都要多。每年由于虫球菌感染而在美国每年在美国发生1,2个门诊和急诊室就诊和464 000次住院。3随着抗生素的使用正在上升,医院中多药的抗菌菌株正在出现,最值得注意的是耐甲氧西林的金黄色葡萄球菌(MRSA),事实证明,传统抗生素的感染是徒劳的。
摘要:金黄色葡萄球菌是一种常见的人类共生病原体,可引起多种传染病。由于抗生素耐药性的产生,病原体对越来越多的抗生素产生耐药性,从而产生了耐甲氧西林金黄色葡萄球菌 (MRSA) 甚至耐多药金黄色葡萄球菌 (MDRSA),即“超级细菌”。这种情况凸显了对新型抗菌药物的迫切需求。细菌转录负责细菌 RNA 的合成,是开发抗菌药物的有效但未充分利用的靶点。之前,我们报道了一类新型抗菌药物,称为 nusbiarylins,它通过中断两种转录因子 NusB 和 NusE 之间的蛋白质-蛋白质相互作用 (PPI) 来抑制细菌转录。在这项工作中,我们根据 nusbiarylins 的化学结构及其对金黄色葡萄球菌的活性开发了一种基于配体的工作流程。整合了基于配体的模型(包括药效团模型、3D QSAR、AutoQSAR 和 ADME/T 计算),并用于以下 ChemDiv PPI 数据库的虚拟筛选。结果,四种化合物(包括 J098-0498、1067-0401、M013-0558 和 F186-026)被鉴定为针对金黄色葡萄球菌的潜在抗菌剂,预测的 pMIC 值范围为 3.8 至 4.2。对接研究表明这些分子与 NusB 紧密结合,结合自由能范围为 -58 至 -66 kcal/mol。
收到日期:2022 年 10 月 24 日;接受日期:2023 年 5 月 23 日;发布日期:2023 年 6 月 16 日 作者隶属关系:1 澳大利亚南澳大利亚州阿德莱德大学生物科学学院分子与生物医学科学系;2 澳大利亚南澳大利亚州阿德莱德大学传染病研究中心 (RCID);3 澳大利亚南澳大利亚州阿德莱德大学澳大利亚抗菌素耐药性生态学中心 (ACARE);4 澳大利亚南澳大利亚州阿德莱德皇家阿德莱德医院血管外科系;5 昆士兰科技大学 (QUT) 健康学院临床科学学院,昆士兰州凯尔文格罗夫 4059,澳大利亚;6 澳大利亚南澳大利亚州阿德莱德大学阿德莱德医学院外科学科; 7 澳大利亚南澳大利亚州阿德莱德伊丽莎白女王医院巴兹尔·赫泽尔转化健康研究中心;8 西班牙瓦伦西亚省瓦伦西亚 FISABIO 研究所卫生与基因组学系;9 澳大利亚南澳大利亚州阿德莱德伊丽莎白女王医院内分泌科;10 澳大利亚南澳大利亚州阿德莱德阿德莱德大学阿德莱德牙科学院。 *通讯作者:Stephen P. Kidd,stephen.kidd@adelaide.edu.au 关键词:糖尿病;糖尿病足部感染;足部溃疡;小菌落变种;金黄色葡萄球菌。缩写:BMI,身体质量指数;DFI,糖尿病相关足部感染;DFI-OM,糖尿病相关足部感染伴有骨髓炎;DFI-W,糖尿病相关足部感染伴有伤口;DFU,糖尿病相关足部溃疡; nsSCV,不稳定小菌落变体;QEH,伊丽莎白女王医院;RAH,皇家阿德莱德医院;SCV,小菌落变体;sSCV,稳定小菌落变体。当前研究期间生成和/或分析的数据集可在 BioProject 数据库中找到,访问编号为 PRJNA821238。本文的在线版本提供了一个补充图和两个补充表。001716 © 2023 作者
摘要:抗生素在感染部位的生物利用度低是治疗失败和细菌耐药性增加的主要原因之一。因此,开发新的、非传统的抗生素输送策略来应对细菌病原体至关重要。在这里,我们研究了两种氟喹诺酮类药物环丙沙星和左氧氟沙星封装到聚合物基纳米载体(纳米抗生素)中,目的是提高它们在细菌感染部位的局部生物利用度。优化配方以实现最大药物负载。纳米抗生素的表面用抗葡萄球菌抗体作为配体分子进行修饰,以靶向金黄色葡萄球菌病原体。通过荧光共聚焦显微镜研究了纳米抗生素与细菌细胞的相互作用。常规测试(MIC 和 MBC)用于检查纳米抗生素制剂的抗菌性能。同时,还采用了生物发光分析模型,揭示了对胶体系统抗菌效力的快速有效评估。与游离型抗生素相比,靶向纳米抗生素对金黄色葡萄球菌的浮游生物和生物膜形式均表现出增强的抗菌活性。此外,我们的数据表明,靶向纳米抗生素治疗的疗效可能受其抗生素释放曲线的影响。
细菌为治疗人类疾病提供了一种很有前途的递送系统。在这里,我们设计了基因组减少的人类肺部病原体肺炎支原体作为活生物治疗剂来治疗生物膜相关细菌感染。该菌株具有独特的遗传密码,这会阻碍基因转移到大多数其他细菌属,并且它缺乏细胞壁,这使得它能够表达针对致病菌肽聚糖的蛋白质。我们首先确定去除致病因素可在体内完全减弱底盘菌株。然后,我们设计了合成启动子并确定了内源肽信号序列,当该序列与异源蛋白质融合时,可促进有效分泌。基于此,我们为底盘菌株配备了一个旨在分泌抗生物膜和杀菌酶的遗传平台,从而产生一种能够在体外、离体和体内溶解导管上预先形成的金黄色葡萄球菌生物膜的菌株。据我们所知,这是第一个可以对抗临床相关的生物膜相关细菌感染的工程基因组减少细菌。
蜂蜜对金黄色葡萄球菌和假单胞菌的临床分离物的功效+2347064608775抽象皮肤是人体防御入侵微生物的第一道防线。由于切割或燃烧而遭到损害,感染可能会设置在伤口中。蜜蜂生产的蜂蜜可以作为可用抗生素的替代方法,微生物已经变得具有抗性。这项研究是为了评估萨马鲁(Samaru),扎里亚(Zaria)对细菌伤口分离株的蜂蜜的疗效。确定了两个蜂蜜样品的近端组成。 铜绿假单胞菌和金黄色葡萄球菌的纯分离株对使用琼脂良好扩散方法通过无菌测试的两个蜂蜜样品的池受到质疑。 使用管稀释法确定蜂蜜的MIC和MBC。 蜂蜜样品的平均pH值为4.93,组成为76.23%碳水化合物,0.16%的灰分,2.23%的脂质和3.45%的蛋白质。 蜂蜜表现出其对铜绿假单胞菌(20.0毫米)的最高活性,比金黄色葡萄球菌(16.0 mm)的浓度为100%v/v。 蜂蜜的活性以降低的浓度降低,直到以25%V的浓度记录没有活性为止。 对金黄色葡萄球菌的蜂蜜的麦克风为25%v/v,对铜绿假单胞菌的麦克风为12.5%v/v。 但是,针对金黄色葡萄球菌和铜绿假单胞菌的蜂蜜的MBC每个为25%v/v。确定了两个蜂蜜样品的近端组成。铜绿假单胞菌和金黄色葡萄球菌的纯分离株对使用琼脂良好扩散方法通过无菌测试的两个蜂蜜样品的池受到质疑。使用管稀释法确定蜂蜜的MIC和MBC。蜂蜜样品的平均pH值为4.93,组成为76.23%碳水化合物,0.16%的灰分,2.23%的脂质和3.45%的蛋白质。蜂蜜表现出其对铜绿假单胞菌(20.0毫米)的最高活性,比金黄色葡萄球菌(16.0 mm)的浓度为100%v/v。蜂蜜的活性以降低的浓度降低,直到以25%V的浓度记录没有活性为止。 对金黄色葡萄球菌的蜂蜜的麦克风为25%v/v,对铜绿假单胞菌的麦克风为12.5%v/v。 但是,针对金黄色葡萄球菌和铜绿假单胞菌的蜂蜜的MBC每个为25%v/v。蜂蜜的活性以降低的浓度降低,直到以25%V的浓度记录没有活性为止。对金黄色葡萄球菌的蜂蜜的麦克风为25%v/v,对铜绿假单胞菌的麦克风为12.5%v/v。但是,针对金黄色葡萄球菌和铜绿假单胞菌的蜂蜜的MBC每个为25%v/v。这项研究证实,扎里亚出售的蜂蜜具有针对伤口病原体的抗菌活性。关键字:蜂蜜,功效,金黄色葡萄球菌,铜绿假单胞菌,伤口。引言伤口是暴露于皮下组织的皮肤上的一种破坏。伤口容易出现微生物定植和增殖(Bowler等,2001)。全球多药耐药物种的兴起。因此,具有抗菌潜力(例如使用蜂蜜)的替代天然来源目前受到了极大的关注(Mansur and Mukhtar,2023年)。蜂蜜是由花蜜花蜜产生的天然甜液体物质(Saranraj和Sivasakthi,2018年)。自远古时代以来,蜂蜜已被用于伤口护理。它已广泛用于治疗急性,慢性,创伤和手术后伤口。它也用于用于溃疡,烧伤,眼部疾病,皮肤病,咽部问题和坏死区域。因此,蜂蜜是其他抗菌剂的替代品,具有有希望的医学实践治疗潜力(Almasaudi,2021年)。蜂蜜对大多数类型的革兰氏阳性和革兰氏阴性细菌作用(Mohaptra等,2011)。蜂蜜的不同成分有助于其抗菌活性。这些成分包括糖,多酚化合物,过氧化氢,1,2-二氨基苯甲化合物和蜜蜂防御素-1;但是,他们的
摘要:属于克隆综合体398(CC398)的金黄色葡萄球菌(SA),由于其在全球范围内传播,因此在该物种中占据了特殊的位置。SA CC398在两个亚群中广泛分开:与牲畜相关的甲氧西林SA(MRSA)和与人类相关的甲氧西林敏感SA(MSSA)。在这里,我们回顾了人类临床感染中SA CC398的全球流行病学,并侧重于MSSA CC398。SA CC398的最后一个共同祖先可能是人类适应的预言ϕ SA3阳性MSSA CC398菌株,但是人与动物之间的多次传播使其进化复合物。MSSA和MRSA CC398具有不同的地理发展。尽管MSSA出现在世界各地的几个国家,但在中国和法国的主要报道约为20%。MSSA CC398经常与严重的感染有关,例如血液感染,心内膜炎和骨关节感染,而MRSA CC398主要报道了皮肤和软组织。MSSA CC398克隆的传播是在全球范围内的,但具有异质流行。预言ϕ Sa3在适应人类生态裂和MSSA CC398的毒力中起着至关重要的作用。但是,允许该血统传播的生物学特征远未被充分理解。
收到日期:2021 年 9 月 30 日;接受日期:2022 年 3 月 6 日;发布日期:2022 年 5 月 13 日 作者隶属关系:1 中佛罗里达大学,4110 Libra Drive,奥兰多,佛罗里达州 32816,美国;2 约翰霍普金斯大学彭博公共卫生学院,415 North Washington Street,巴尔的摩,马里兰州 21231,美国。 *通讯作者:Catherine G. Sutcliffe,csutcli1@jhu.edu 关键词:携带;基因组流行病学;美洲原住民;系统发育;金黄色葡萄球菌。缩写:AN,前鼻孔;CA-MRSA,社区相关耐甲氧西林金黄色葡萄球菌;CC,克隆复合体;CI,置信区间;gDNA,基因组 DNA;IHS,印度健康服务局;IRB,机构审查委员会; MLST,多位点序列分型;MRSA,耐甲氧西林金黄色葡萄球菌;MSSA,甲氧西林敏感金黄色葡萄球菌;NP,鼻咽癌;ONT,牛津纳米孔技术;OP,口咽癌;PR,患病率;SCC mec,葡萄球菌盒式染色体 mec ;ST,序列类型;WGS,全基因组测序。‡现地址:美国辉瑞公司全球肺炎球菌疫苗、科学事务和流行病学部。金黄色葡萄球菌基因组序列的 NCBI SRA 接入号在补充文件 S1 中给出。†这些作者对这项工作贡献相同数据声明:所有支持数据、代码和协议均已在文章中或通过补充数据文件提供。本文的在线版本提供一个补充文件和四个补充表格。 000806 © 2022 作者
金黄色葡萄球菌形成的生物膜由嵌入由蛋白质,多糖,脂质和细胞外DNA(EDNA)的基质中的细胞组成。生物膜相关的感染很难治疗并可以促进抗生素耐药性,从而导致负面的医疗保健结果。edna有助于金黄色葡萄球菌的稳定性,生长和免疫渗透特性。edna是由自溶的释放的,自溶的是由murein水解酶介导的,这些水解酶通过霍林样蛋白形成的膜孔进入细胞壁。金黄色葡萄球菌的EDNA含量在单个菌株之间有所不同,并且受环境条件(包括存在抗生素的存在)影响。edna通过充当促进蛋白质细胞和细胞 - 细胞相互作用的静电网,在生物膜的发育和结构中起重要作用。由于埃德娜(Edna)在生物膜中的结构重要性及其在金黄色葡萄球菌分离株中的普遍存在,因此它是治疗剂的潜在靶标。用DNase处理生物膜可以消除或大大减少它们的大小。此外,靶向与EDNA结合并稳定的DNABII蛋白的抗体也可以分散生物膜。本综述讨论了有关Edna在金黄色葡萄球菌中的发行,结构和功能的最新文献,此外还讨论了针对Edna靶向生物膜消除的潜在途径的文献。