在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
进行了转化,转化的治疗线(即符合疾病的疾病)从此开始。However, the clinical experts noted that if a patient FL has already been given therapy that is an active regimen for high-grade lymphoma including DLBCL that includes a rituximab-containing regimen with anthracycline (e.g., R-CHOP), especially when treatment is recent, the patients should be regarded as having failed first-line therapy and should be eligible for second-line CAR T-cell therapy.要考虑用于二线CAR T细胞疗法,临床专家指出,患者应像Zuma-7试验中那样将患者暴露于含有蒽环类药物治疗方案(或依托泊苷(如果是蒽环类药物)中,无论是蒽环类药物,无论是不可用的)。•临床专家阐明了复发性疾病的定义
电致变色 (Electrochromic, EC) 是材料的光学属 性 ( 透过率、反射率或吸收率 ) 在外加电场作用下发 生稳定、可逆颜色变化的现象 [1] 。 1961 年 , 美国芝 加哥大学 Platt [2] 提出了 “ 电致变色 ” 的概念。到 1969 年 , 美国科学家 Deb [3] 首次报道了非晶态三氧化钨 (Tungsten Trioxide, WO 3 ) 的电致变色效应。随后 , 人 们开始对电致变色材料进行了广泛而深入的研究。 20 世纪 80 年代 , “ 智能窗 ” 概念提出后 [4] , 由于节能环 保、智能可控等优点 , 形成一波新的电致变色技术研究 热点 [5-10] 。随着研究的深入 , 特别是纳米技术的快速 发展 , 器件性能得到了大幅的提升 ( 图 1(a)) [11-13] , 电 致变色器件 (Electrochromic Device, ECD) 也逐渐实现 了产业化应用。 根据材料种类不同 , 电致变色材料可大致分为 有机电致变色材料和无机电致变色材料。相较而言 , 有机电致变色材料具有变色速度快、柔性好、可加 工性强和颜色变化丰富等优点 , 主要包括导电高分 子、紫罗精类小分子和金属有机螯合物等 [14] 。无机 电致变色材料具有光学对比度高、光学记忆性好和 环境稳定性高等优点 , 主要包括过渡金属氧化物以 及普鲁士蓝等 [15] 。目前 , 电致变色器件的结构主要 为类三明治结构 , 由两个透明导电层中间夹一层电 致变色活性层构成。根据电致变色材料种类不同 , 电致变色活性层可分为整体结构和分层结构。整体 结构是电致变色材料与电解质相互混合为一层 , 这 类结构主要针对紫罗精等小分子有机物。这类器件 在外加电场作用下 , 有机小分子扩散到电极表面或 以电解质中氧化还原剂为媒介发生氧化还原反应而 实现颜色变化 [16] 。分层结构是电致变色材料、电解 质和对电极 ( 或叫离子储存层 ) 依靠界面接触分层 ,
摘要:地下合成已成为一种有力的策略,用于制造原子上精确的石墨烯纳米骨(GNR)的前所未有的形式。但是,锯齿形GNR(ZGNR)的地下合成仅取得了有限的成功。在此,我们报告了2,7-二溴-9,9' - 苯甲酰基的合成和表面反应,作为朝向π-延伸ZGNRS的前体。通过扫描隧道显微镜和高分辨率非接触原子力显微镜的表征清楚地证明了烟碱融合的ZGNR的形成。独特的骨骼重排,可以通过分子内多尔 - alder cycloadition来解释。对蒽接受ZGNR的电子特性的理论计算显示自旋极晶状体和0.20 eV的狭窄带隙。关键字:地下合成,石墨烯纳米替恩,表面反应,重排,边缘状态■简介
摘要:急性髓系白血病 (AML) 细胞中活性氧 (ROS) 水平升高,这会促进细胞增殖并引起氧化应激。因此,抑制 ROS 形成或使其升高至毒性水平以上已被视为治疗策略。最近有研究表明,ROS 升高与 NADPH 氧化酶 4 (NOX4) 活性增强有关。因此,对化合物 Setanaxib (GKT137831) 进行了对 AML 细胞的抑制活性测试,Setanaxib 是一种临床上先进的 ROS 调节物质,最初被确定为 NOX1/4 抑制剂。Setanaxib 作为单一化合物表现出抗增殖活性,并在体外强烈增强蒽环类药物如柔红霉素的细胞毒作用。Setanaxib 减轻了 FLT3-ITD 驱动的骨髓增殖小鼠模型中的疾病。 Setanaxib 并未显著抑制 FLT3-ITD 信号传导,包括 FLT3 自身磷酸化、STAT5 激活、AKT 或细胞外信号调节激酶 1 和 2 (ERK1/2)。令人惊讶的是,Setanaxib 对细胞增殖的影响似乎与 NOX4 的存在无关,并且与 ROS 猝灭无关。相反,Setanaxib 导致 AML 细胞中的 ROS 水平升高,更重要的是,增强了蒽环类诱导的 ROS 形成,这可能有助于综合作用。有必要进一步评估 Setanaxib 作为细胞毒性 AML 治疗的潜在增强剂的作用。
摘要:大多数儿科癌症对高度化学敏感,细胞毒性化学疗法一直是治疗的支柱。蒽环类药物对大多数类型的儿童癌具有非常有效的效果,例如神经母细胞瘤,肝母细胞瘤,肾细胞瘤,横纹肌肉瘤,尤因肉瘤等。然而,急性和慢性心脏毒性是邻苯二酚使用的主要缺点之一,限制了它们的效用和有效性。羟丙基丙烯酰胺聚合物共轭多吡霉素(P-THP),该聚合物通过增强的渗透性和保留效应(EPR)效应高度选择性地靶向肿瘤组织,其次是在肿瘤周围迅速释放活性多吡霉素分子进入酸性环境。,尽管后者很少发生在正常组织周围的非酸性环境中。这种机制有可能最大程度地减少包括心脏毒性在内的急性和慢性毒性,并通过与活性分子的肿瘤靶向积累和可能的剂量升级的协同作用来最大程度地提高化学疗法的效率。仅在给定方案中用P-THP代替阿霉素可以改善对蒽环类敏感的小儿癌的预后,而诸如心脏毒性等不良风险的风险很小。作为癌症是一种动态疾病,在其过程中显示出肿瘤内异质性,因此必须持续平行细胞毒性剂和分子靶向剂,才能发现潜在的更有效的治疗方法。
类脑计算是借鉴脑科学基本原理,打破 “ 冯诺依曼 ” 架构束缚的新型计算技术。本研究组将从理论和器件两个方向对类脑计算展开协同 研究。 理论方面:研究类脑计算架构、模型和算法,探索基于类脑计算的类脑智能的基础理论;借鉴神经元模型、神经环路传导、神经编码 及认知、学习、记忆、决策等神经机制,逐步建立和完善类脑处理信息处理的数学 / 计算原理和模型;构建类脑计算和智能的统一理论 框架。为类脑计算器件及系统的发展提供理论基础。 器件方面:基于新材料和新技术,研究新型高性能类脑神经器件,解决一致性差、可靠性差、规模化难等痛点;研究基于类脑神经器 件的网络架构,构建大规模阵列,开展外围电路的研发与设计;研究基于新型类脑器件的感知和计算架构,发展感存、存算、感存算 一体系统。
• 蒽环类抗生素 例如表柔比星、丝裂霉素 • 铂化合物 例如顺铂、卡铂 • 紫杉烷 例如紫杉醇、多西他赛 • 长春花生物碱 例如长春新碱、长春花碱 • 抗代谢物 例如卡培他滨、5FU、阿糖胞苷 • 烷化剂 例如苯丁酸氮芥、环磷酰胺 • 拓扑异构酶 1 例如伊立替康 • 拓扑异构酶 2 例如依托泊苷 • 其他 例如天冬酰胺酶,砷
药物引起的心脏毒性被视为药物开发早期阶段的一大障碍。约有 30% 的潜在药物在临床试验中因安全问题被拒绝[1],据报道,在总共 1,430 种药物中,有 793 种有心血管副作用。[2] 以蒽环类抗癌药物阿霉素 (DOX) 为例,尽管根据长期使用积累的临床数据制定了详尽的药物剂量方案,但仍有 8–26% 的患者出现心脏毒性。[3] 虽然有一些临床前心脏毒性测试,包括基于兔浦肯野细胞 [4] 和过表达人类 ether-a-go-go 相关基因的 HEK293 细胞的单细胞测定[5],但非肌细胞单细胞不能完全预测化合物的心脏毒性潜力。[6,7]