自 20 世纪 50 年代以来,硅及其原生氧化物 SiO 2 就已用于半导体技术,并且对于当今新型器件技术的开发仍然至关重要。最近的理论和实验研究表明,制造高质量的界面层对于现代纳米级器件的可靠运行至关重要。本文提出了一种基于第一性原理的方法,从理论上评估 2 纳米以下超薄层范围内技术相关的 Si(100) 表面的热氧化过程。通过从头算分子动力学和基于密度泛函的紧密结合模拟动态模拟氧化过程。我们定性地解释了实验上众所周知但理解甚少的初始氧化阶段氧化速率下降,这是各种氧化机制之间的复杂相互作用,例如表面的快速 O 2 解离、由分子前体状态介导的较慢氧结合以及 O 2 通过氧化物的扩散。我们的模型结合了以前报告的实验见解,形成了 Si 氧化物生长的全面图像。发现氧化物表面层立即非晶化的有力证据,并确定这是晶格振动的直接结果。此外,我们的建模方法是一种基于晶体硅表面的逐步氧化来生成逼真的非晶界面结构的新方法,也可以扩展到其他材料系统。
椭圆法是一种成熟的实验方法,其根部回到了现代光学元件本身的早期阶段。它通常是由保罗·德鲁德(Paul Drude)在19世纪的最后十年中发明的,但是在Drude开始工作之前已经采用了类似的技术。自1940年代以来使用的实际术语“椭圆法”正在使用。有趣的是,它始于描述生物应用的工作。值得注意的是,这是在一个现代实心相,尤其是半导体材料的现代物理学正在迅速扩展。椭圆形即将受到固态和表面研究界的欢迎,因为研究表面,界面和薄层的能力是必不可少的。椭圆法是一种从数值计算和建模概念中受益匪浅的方法。固态物理和椭圆法之间的连接是科学和技术中自我强化创新周期的一个例子。尤其是在计算能力wasaccompaniedwithanincreasefellipsometryresearch和社区的迅速扩展的情况下,大大增加了。椭圆法 - 微电子和数字技术。反之亦然,它可以开发更好的电子设备。如果没有椭圆计的开发及其数十年前的许多折叠应用,那是数字时代的基础将不存在的硬件。椭圆法是对反射实验的偏振法实现。所有偏振技术都取决于
摘要阿尔茨海默氏病(AD)是由脑细胞快速变性引起的一种不可逆的神经退行性疾病。越来越多的研究人员专注于有效,准确的AD诊断方法。在本文中,提出了一种通过从结构磁共振成像(SMRI)的显着性图中提取相等距离的环形上下文特征来识别AD的方法。对阿尔茨海默氏病神经影像倡议(ADNI)数据集的薄层MR图像的实验结果表明,我们的方法有助于提高识别脑部疾病的性能。特别是,AD与CN的分类精度为94.83%,AD对MCI的分类精度分别为98.31%,MCI与CN分别为85.77%。同时,对开放访问系列成像研究的实验数据集和临床收集的厚层MR图像验证了该方法的分类性能。结果表明,该方法在临床应用中可能具有更高的应用值,而AD与CN相比,分类精度分别为96.56%和98.18%。与基于灰色含量(GM)密度,皮质厚度和海马体积的方法相比,我们的方法达到了AD(或MCI)和CN分类的较高精度。
摘要:本文重点介绍一种新型铜镍厚膜电阻浆料,该浆料专为实现低欧姆功率电阻而设计和实验开发。这种铜镍浆料设计用于厚印刷铜导体,与传统的钌基厚膜电阻浆料相比,可在氮气保护气氛中烧结。铜镍浆料由铜和镍微粒、玻璃粘合剂颗粒和有机溶剂组合制成,并针对在氮气气氛中烧结进行了优化。本文详细介绍了铜镍浆料的成分及其热性能(通过同步热分析验证)、干燥和烧结铜镍膜的形态描述以及最终印刷电阻的电参数。通过电子显微镜和元素分布分析证明,铜和镍微粒在烧结过程中扩散在一起并形成均匀的铜镍合金膜。该薄膜具有低电阻温度系数 ± 45 × 0 − 6 K − 1 和低薄层电阻值 45 m Ω /square。经验证,配制的铜镍浆料可氮烧,并且与厚印刷铜浆料具有良好的兼容性。这种组合允许实现直接集成低欧姆电阻器的功率基板。
这项研究研究了使用计算和实验方法在太阳能电池中使用的计算和实验方法,研究了新型共轭化合物的几何和电子特性。密度功能理论(DFT)在B3LYP水平上具有6-311g(DP)基集,用于探索这些材料的理论基态几何形状和电子结构。我们检查了环结构和取代基的影响,以更好地了解分子结构和光电特性之间的关系,重点是最高占用分子轨道(HOMO)的能级和最低的未置分子轨道(Lumo)。Homo-Lumo Energy GAP(ΔG)和开路电压(VOC)分析证实了这些材料作为有机染料太阳能电池候选物的潜力。在实验上,使用标准有机合成技术实现了化合物D1,D2,D3和D4的合成。中间化合物是通过冷凝反应合成的,并进一步反应形成了最终的肼产物。使用薄层色谱法纯化了这些化合物,其结构通过光谱技术确认,包括NMR,IR和MS。全面的验证确保了合成化合物的准确性和可重复性,证明了它们作为染料敏化太阳能电池的材料的功效。合并的理论和实验结果为优化这些染料增强太阳能细胞性能提供了坚实的基础。
摘要:合成了氧化钴(CO 3 O 4)装饰的碳化硅(SIC)纳米树阵列(称为CO 3 O 4 /sIC NTA)电极,并研究了用于微型 - 苏格体配件的应用。首先,由镍(Ni)催化化学蒸气沉积(CVD)方法制备了良好的SIC纳米线(NWS),然后由Co 3 O 4的薄层和层次CO 3 O 4 nano-nano-luper-Clusters组成,分别是在侧面和最高的sic nw上制造的。SIC NWS上Co 3 O 4的沉积使电极/水溶液界面的电荷转移由于其在CO 3 O 4装饰后极为亲水的表面特性而在电极/水性电解质界面上受益。此外,CO 3 O 4 /SIC NTA电极由于其稳固的结构而沿SIC纳米线的长度提供了方向的电荷传输路线。通过使用CO 3 O 4 /SIC NTA电极进行微轴心电容器的应用,以10 mV s-1扫描速率以10 mV s-1扫描速率以循环伏安法测量获得的面积电容达到845 mf cm-2。最后,还通过循环伏安法的循环测试评估了电容耐用性,以高扫描速率为150 mV s -1,对于2000个循环,表现出极好的稳定性。
据报道,长期服用减肥药会导致营养不良和生殖系统22 受损。此外,许多药物具有剂量依赖性,过量使用会产生严重的副作用。因此,检测临床批准和禁用的减肥药的血液浓度以监测不良反应的发展是必不可少的。测定减肥药的方法多种多样,包括光谱法,例如近红外光谱 (NIRS) 和拉曼光谱 (RS);色谱法,例如薄层色谱法 (TLC)、液相色谱法 (LC)、气相色谱-串联质谱法 (GC-MS/MS) 和液相色谱-串联质谱法 (LC-MS/MS);23 – 26 离子迁移谱法 (IMS) 等等。但主要目标是防止在食品或药物中非法添加减肥药。本实验测量的样品是具有复杂基质的血液。 LC-MS/MS分离效果好,特异性和灵敏度高,适用于血液中目标分析物的准确定量。蛋白沉淀是利用甲醇、乙腈等与水混溶的有机溶剂,改变蛋白质分子间的氢键,使其变性、凝集,以去除蛋白质等大分子的干扰。实验中采用的96孔蛋白沉淀板正是基于此原理,可以有效阻断乙腈等常见的蛋白沉淀剂,避免其渗透。如果样品数量较大,96孔板的结构可以比传统的蛋白沉淀方法有效节省时间,使整个前处理过程更加高效、自动化。27,28
背景:发射α粒子的放射疗法对于治疗播散性癌症具有重要意义。锕-225 ( 225 Ac) 衰变时产生四个 a 粒子,是用于靶向放射治疗应用的最具吸引力的放射性核素之一。然而,这种同位素的供应问题限制了其可用性,并增加了研究和翻译的成本。人们的努力主要集中在基于加速器的方法上,这些方法除了长寿命的 227 Ac 外,还产生 225 Ac。目标:作者研究了 225 Ac/ 227 Ac 材料在良好生产规范下对 DOTA 螯合物结合肽的放射性标记和放射性药物质量控制评估的影响。作者在与发生器或加速器产生的锕放射性标记相同的条件下使用自动化模块。方法:作者对放射性标记产品进行了表征,包括薄层色谱法、高压液相色谱法、伽马计数和高能分辨伽马光谱法。结果:肽经过放射性标记,放射化学纯度 > 95%,发生器产生的 225 Ac 产率较高。使用 225 Ac/227 Ac 时,放射性标记结果产生的材料存在细微但可检测的差异。伽马光谱能够识别最初用 227 Th 标记的肽,并在 100 天后定量 225 Ac 携带肽。结论:使用 225 Ac/227 Ac 材料生产的肽可能适合翻译,但提出了新的问题,包括处理时间、物流和污染物检测。
抽象的微生物依恋和生物膜形成是Mi-Croermanisms的无处不在行为,是接触生物涉及的最关键的先决条件。独居石和异种类是两个商业上可利用的矿物,其中包含稀土元素(REES)。使用磷酸盐溶解微生物的生物渗以是一种用于提取REE的绿色生物技术方法。在这项研究中,使用公共激光扫描显微镜(CLSM)和扫描电子显微镜(SEM)研究了这些矿物表面上克雷伯菌的微生物附着和生物膜形成。在批处理培养系统中,Aerogenes能够在三种磷酸盐矿物的表面附着并形成生物膜。显微镜记录显示,在微生物接种的最初分钟内,对k的生物膜发育的三个独特阶段,对表面的初始附着。随后是表面定植,形成成熟的生物膜作为第二个可区分的阶段,并将分散作为最后阶段。生物膜具有薄层结构。定位和生物膜形成位于物理表面缺陷,例如裂缝,凹坑,凹槽和凹痕。与独居石和异种晶体相比,高级独居石矿石表面的比例较高,被生物膜覆盖,这可能是由于其较高的表面粗糙度所致。未检测到针对特定矿物学或矿物化学成分的选择性附着或定殖。最后,与对照样品的非生物浸出相反,微生物活性导致高级独居石的微生物侵蚀。
高级难度理论的领域1。立体化学纽曼预测;控制新的立体中心(Felkin-Anh,Zimmerman-Traxler)的模型;方形平面和八面体过渡金属复合物的几何异构体;识别具有多个立体中心的分子中的异构体可能性。2。酶根据反应类型分类;同位素标记研究;涉及辅酶A的代谢途径A。3。相位和化学平衡潜热和Clausius-Clapeyron方程;综合性能;平衡常数的温度依赖性。4。分析技术质谱法(分子离子,碎片,同位素分布); IR数据的解释。5。光化学光催化;乐队间隙;量子产量;半导体。6。mo理论mo图的硅藻图;金属 - 配体相互作用。The following topics will not appear at IChO 2025: Formal group theory Planar, axial, or helical chirality Enzymatic kinetics Quantitative understanding of any isotope effects Kinetics of complex reactions Steady state and quasi equilibrium approximations NMR spectroscopy Synthetic polymers Photocatalytic organic mechanisms Pericyclic organic mechanisms Crystal field theory Thermodynamics and kinetics of吸附固态晶体结构不预期:记住心脏实用的代谢途径1。真空过滤2。薄层色谱图3。微观底片和96井板的使用显微镜反应不会出现在ICHO 2025上:不预期使用不混可能的溶剂来提取学生的提取:使用:使用分光光度计本身
