薄层平面内各向异性材料可以支持超受限极化子,其波长取决于传播方向。此类极化子在探索基本材料特性和开发新型纳米光子器件方面具有潜力。然而,超受限平面内各向异性等离子体极化子 (PP) 的实空间观测一直难以实现,因为它们存在于比声子极化子更宽的光谱范围内。在这里,我们应用太赫兹纳米显微技术对单斜 Ag 2 Te 薄片中的平面内各向异性低能 PP 进行成像。通过将薄片置于 Au 层上方,将 PP 与其镜像混合,增加了方向相关的相对极化子传播长度和定向极化子限制。这允许验证动量空间中的线性色散和椭圆等频轮廓,从而揭示平面内各向异性声学太赫兹 PP。我们的工作展示了低对称性(单斜)晶体上的高对称性(椭圆)极化子,并展示了使用太赫兹 PP 对各向异性载流子质量和阻尼进行局部测量。
它的内部结构与其他二极管不同,因为它仅由N型半导体材料组成,而大多数二极管都由P和N掺杂区域组成。因此,它在两个方向上进行进行,并且不能像其他二极管一样整流交替的电流,这就是为什么某些来源不使用二极管术语,而是更喜欢TED的原因。在Gunn二极管中,存在三个区域:每个端子上有两个区域,其中两个区域在它们之间,它们之间有一层薄的n掺杂材料。当将电压施加到设备上时,电梯度将在整个薄层中最大。如果电压增加,则层的电流将首先增加。最终,在较高的场值下,中间层的导电性能发生了变化,增加了电阻率并导致电流下降。这意味着Gunn二极管在其电流 - 电压特性曲线中具有负差分电阻的区域,其中施加电压的增加会导致电流减小。此属性允许其放大,充当射频放大器,或者在偏向DC电压时变得不稳定和振荡。
摘要:二维材料可访问光子学的最终物理限制,具有吸引人的超级合理光学组件(例如波格和调节剂)。特别是在单层半导管中,强烈的激子共振导致介电常数从正极到均匀的值急剧振荡。这种极端的光学响应使表面激子 - 磨牙能够引导可见光与原子薄层结合。然而,这种超薄波格 - 支持具有低配置的横向电(TE)模式,并且具有短传播的横向磁性(TM)模式。在这里,我们提出,包括单层WS 2和六角形硝酸硼(HBN)的现实分号 - 导管 - 隔离器 - 隔离器超晶格可以提高TE和TM模式的性质。与单个单层相比,分隔两个单层的1 nm HBN间隔物的异质结构可增强TE模式的配置,从1.2到0.5μm左右,而TM模式的平面外扩展则增加了25至50 Nm。我们提出了两个简单的添加性规则,用于在超薄纤维近似中有效的模式结构,用于异质结构,间隔厚度增加。堆栈 -
摘要:发现原子薄层的材料(例如石墨烯和过渡金属二分法生化剂)在二维中揭示了对新型基本物理和设备应用的独特探索。表征它们的晶体对称性和随后的电子性能是重要的,即实现这些降低的尺寸系统的全部潜力,从根本上讲,这从根本上决定了拓扑,手性和丰富的界面物理学。第二次谐波生成(SHG)是一种非线性光学效应,对晶体对称性和电子结构敏感,这被证明是捕获本质物理学的最强大但最简单的技术之一。另一方面,分层材料的2D性质具有多种外部刺激的物理性能,可以使其具有大量的可调性,这又为开发2D非线性光电应用程序铺平了道路。在这篇综述中,我们概述了使用第二次谐波生成光谱和显微镜检查的最新努力,以探测晶格结构和偶极性金属二甲硅烷和极性材料中的晶格结构和偶极极化。此外,涵盖了用于控制SHG的多种外部刺激,作为潜在的光电设备。我们以基于SHG光谱法的新兴磁磁和拓扑材料的探索方向的未来探索方向进行了结论。
2D半导体可以推动量子科学和技术的进步。但是,它们应该没有任何污染。同样,相邻层及其电子特性的晶体学排序和耦合应具有良好的控制,可调且可扩展。在这里,这些挑战是通过一种新方法来解决的,该方法结合了分子束外延和原位带工程在石墨烯上半导体硒化(GASE)的超高真空中。通过电子差异,扫描探针显微镜和角度分辨的光电子光谱法表明,在层平面中与基础与石墨烯的下层晶格相对的原子研究表明,GASE的原子薄层对齐。GASE/石墨烯异质结构(称为2semgraphene)具有GASE的中心对称性(组对称性D 3D)多晶型物,GASE/Chapeene界面处的电荷偶极子,以及可通过层厚度调谐的带结构。新开发的可伸缩2秒封装用于光学传感器,该传感器利用光活动Gase层和与石墨烯通道的接口处的内置电势。此概念证明具有进一步的进步和设备体系结构,将2semgraphene作为功能构建块。
Dysoxylum 属具有多种次生代谢产物。对该属各种物种的研究一直在增长,并产生了具有有趣结构和活性的化合物,到目前为止,已报道了许多萜类化合物、色满生物碱、柠檬苦素类、倍半萜、黄酮类、类固醇、原柠檬苦素类和硫的化合物。这非常有趣。具有多种次生代谢产物的 Dysoxylum 属物种之一是 D. alliaceum 。本研究的目的是获得 D. alliaceum 树皮的次生代谢产物。将 D. alliaceum 树皮依次用正己烷、乙酸乙酯和甲醇浸渍。采用各种色谱技术分离和纯化乙酸乙酯提取物,并使用紫外、红外、核磁共振和质谱等光谱方法进行表征,并通过薄层色谱分析指导获得化合物 6,7-二甲氧基二氢香豆素和拟议的生物合成。根据光谱数据的解释并与先前研究的光谱数据进行比较,确定了这些化合物的化学结构。对 P-388 MTT 白血病细胞的细胞毒活性测试获得 IC 50 为 39.210 g/mL,并被宣布为无活性。
a。离心技术:原理,差异离心,密度梯度离心,超中心及其在生物系统中的应用。b。色谱技术:色谱技术的原理类型,例如色谱柱,薄层,纸张,吸附,分区,气体液体,离子交换,亲和力,高性能及其应用。c。光度法和色彩法的原理和技术:啤酒和兰伯特法律,可见和超劣酸酯分光光度计,光谱荧光测定法,荧光法,磷光,磷光,化学发光,涡轮纤维化肾上腺仪,火焰光量原子量原子量原子原子原子吸收量及其应用。d。核磁共振,电子自旋谐振晶体学,质谱法,串联质谱,纳米技术和微结构,研究体内代谢中的技术,NMR,SPECT,PET,PET扫描:原理,仪器,仪器,技术,技术和应用,e。放射性原理:性质和类型,衰减速率放射性衰减,放射性单位,检测和测量,无线电活动,辐射危害及其在生物系统中无线电活动和无线电同位素的预防应用。f。电泳,原理,类型及其在生物系统中的应用。
摘要ATL-1 2PQ格式Picosatellite是一项合作实验,涉及两家私营公司H-ION Research,Development and Innovation Ltd.和ATL CPLC。以及布达佩斯特技术与经济学大学以及Eotvos Lorand University。此任务跨越了大约10个月,在此期间,ATL-1在低地球轨道上绕。该项目的目的是开发用于电池薄层绝缘的功能测试。使用了三种不同的,氧化铝的特殊结构化新开发和制造的热绝缘材料来隔热电池。这三种材料如下:除了用作参考材料的kapton箔外,多孔纤维,复合材料和冷冻凝胶。这项研究的主要目的是研究这些实验材料在相关空间环境中的热行为,并确定最有效的绝缘材料。还研究了通过绕地球绕地球绕的温度循环。还从温度数据集确定了材料的热绝缘强度,以识别最有效的热绝缘子。结果表明,与飞行前实验室测试的结果一致,多孔纤维始终优于电池两侧的其他材料。该研究还包括对温度对太阳照射的外观和消失的响应时间的分析。该数量的行为也与更好的热特性材料密切相关。
白血病 (ALL) 5 。长春花碱用于治疗乳腺癌、睾丸癌和神经母细胞瘤 6 。长春地辛是一种从长春花碱中提取的生物碱,已显示出对抗霍奇金淋巴瘤和非霍奇金淋巴瘤、肺癌和乳腺癌的活性 7 。长春瑞滨用于治疗已发展到周围组织或身体其他部位的非小细胞肺癌 (NSCLC) 8 。根据最近的一项研究,长春胺是少数对活细胞有积极作用的生物碱之一。通过增加血流量和区域葡萄糖的吸收,它可以作为脑代谢增强剂,对缺血和缺氧具有神经保护作用,并具有抗氧化和抗凋亡特性。长春胺被认为是治疗镰状细胞病的潜在成分,因为它似乎可以作为活细胞中的氧载体 9 。长春胺是一种单萜吲哚生物碱(图1),主要存在于长春花叶中10。在本研究中,根据国际协调会ICH Q2(R1)指南11的建议,建立了高效薄层色谱法(HPTLC)对长春花叶甲醇提取物中的长春胺进行定量分析。
摘要:机械应变工程对于许多集成的光子应用一直很有希望。然而,对于材料电子带隙的工程,应变均匀性与与光子集成电路(图片)的集成兼容性之间存在权衡。在此,我们采用了氮化硅(SIN X)应激源的简单凹陷型设计,以达到均匀的应变,并在图片上感兴趣的材料中具有增强的幅度。正常的,均匀的0.56%薄层紧张的锗(GE) - 隔离剂(GOI)金属 - 肌电指挥剂 - 金属光二极管。该设备在1,550 nm时表现出1.84±0.15 A/W。在1,612 nm处提取的GE吸收系数增强了〜3.2×至8,340 cm -1,并且优于0.53 Ga 0.47的高度,最高为1,630 nm,受测量光谱限制。与非衰退的设备相比,观察到C频带中的额外吸收系数改善10%至20%,在L频带中观察到40%至60%。这项工作促进了自由空间PIC应用的凹陷GOI光电二极管,并为各种铺平了道路(例如ge,GESN或III-V基于图片上均匀紧张的光子设备。
