二尖瓣脱垂(MVP)代表原发性二尖瓣反流的最常见原因。几年来,这种疾病的生物学机制吸引了研究人员的注意,试图确定负责这种特殊情况的途径。在过去十年中,心血管研究已从一般的生物学机制转变为分子途径的改变。例如,TGF-β信号传导的过表达显示在MVP中起关键作用,而血管紧张素-II受体阻断可通过在同一信号传导途径上作用来限制MVP的进展。关于细胞外基质组织,瓣膜间质细胞的密度增加和催化酶的失调(基质金属蛋白酶酶尤其是基质金属蛋白酶)改变了胶原蛋白,弹性蛋白和蛋白聚糖成分之间的稳态,已经证明了可能为myxommot贡献了Myxometoute MVP。此外,已经观察到,高水平的骨蛋白蛋白蛋白可能通过增加退化的二尖瓣LEA层中的胶原蛋白沉积来有助于MVP的发病机理。尽管据信MVP代表了多种遗传途径改变的结果,但要区分综合症和非综合症状很重要。在第一种情况下,例如在Marfan综合征中,已经清楚地鉴定出了特定基因的作用,而在后者中,逐渐增加了遗传基因座的数量。此外,由于已经鉴定出可能与MVP进展和严重程度相关的潜在引起疾病的基因和基因座,基因组学已得到更多的兴趣。动物模型可能有助于更好地理解MVP的分子基础,可能会提供足够的信息来解决旨在减慢MVP进展的特定机制,因此产生了影响这种情况自然历史的非手术疗法。尽管在这个领域取得了持续的进步,但提倡进一步的翻译研究,以提高我们对MVP开发和进展的生物学机制的了解。
硝唑尼特已被研究用于治疗结直肠癌和乳腺癌。然而,其分子靶点和途径尚未被探索用于治疗肝细胞癌 (HCC)。利用网络药理学方法,研究了硝唑尼特治疗 HCC 的潜在靶点和分子途径。从 GeneCards 数据库中提取 HCC 靶点。使用 Swiss Target Prediction 和 Super Pred 预测硝唑尼特的潜在靶点。使用 VENNY 在线工具分析相交靶点。使用 Cytoscape 构建了蛋白质-蛋白质相互作用 (PPI)、聚类和核心靶点-途径网络。使用注释、可视化和集成发现数据库 (DAVID)、基因本体 (GO) 和京都基因和基因组百科全书 (KEGG) 进行途径富集分析。使用 Auto Dock Vina 将硝唑尼特与抗 HCC 核心靶点进行分子对接。共鉴定出硝唑尼特168个潜在靶点、13,415个HCC相关靶点和153个交叉靶点。鉴定出前8个抗HCC核心靶点:SRC、EGFR、CASP3、MMP9、mTOR、HIF1A、ERBB2和PPARG。GO富集分析表明,硝唑尼特可能通过影响参与多个生物过程(BP)(蛋白质磷酸化、跨膜受体蛋白酪氨酸激酶(RTKs)信号通路、MAP激酶活性的正向调控等)的基因靶点而发挥抗HCC作用。KEGG通路和核心靶点-通路网络分析表明,癌症中的通路和癌症中的蛋白聚糖是两条对硝唑尼特抗HCC作用有显著贡献的关键通路。分子对接结果显示,抗HCC八大核心靶点与硝唑尼特之间存在活性相互作用的潜力。我们的研究为硝唑尼特可能对HCC具有独特的治疗效果这一观点提供了理论基础,而所确定的药理学靶点和途径可能作为HCC治疗的生物标志物。
粘液在胃肠道(GI)区中起着关键作用,是宿主防御系统的组成部分,并为与居民微生物组建立了共生关系的序幕。粘液是一种类似凝胶的物质,沿着肠道的上皮衬里形成保护性屏障,是针对病原体和环境侮辱的第一道防线(图1)。1,2肠粘液代表了一个复杂的生物环境,由杯状细胞分泌的粘蛋白与肠肠上皮细胞分泌的抗菌肽/蛋白质混合在一起,并泛滥到肠道隐窝底部。3,4粘蛋白是大型糖蛋白,在粘液中形成聚合物网格,为该保护层提供粘弹性和结构。5超出其物理屏障功能,粘蛋白聚糖还可以作为微生物的营养来源,从而促进了有助于肠道稳态的共生细菌的生长。6此外,粘蛋白是影响宿主对微生物定植的反应的免疫调节剂,并有助于维持平衡和耐受的免疫环境。3粘液,粘蛋白和肠道微生物组之间的复杂相互作用突出了它们在保留肠道健康方面的集体意义,并强调了在与营养不良和胃肠道疾病有关的情况下,了解这些动态相互作用对治疗干预措施的重要性。结肠粘液被组织为由密集的内部和松散的外层组成的功能性双层。这些层的完整性或组成中的破坏内部粘液层与上皮细胞相邻,用作防止微生物与宿主上皮之间直接接触的物理屏障。由紧密堆积的高糖基化的粘蛋白蛋白组成,该层充当物理网状,可防止病原体的扩散,但可以使营养物质渗透到上皮细胞上。较少密度和更渗透的外粘液层会产生富含营养的栖息地,从而促进有益微生物的定殖和生长。,这些粘液层协调了一个精心调整的空间布置,不仅可以保护宿主免受有害病原体的侵害,而且还可以培养一个多样化稳定的微生物群落。
细胞外基质(ECM)是嵌入神经系统各种细胞的蛋白质和糖的密集且动态的网络。它由许多大分子组成,例如胶原蛋白,弹性蛋白,纤维蛋白,层粘连蛋白,糖蛋白,如Tenascin,Glycosaminoglycans(GAGS)和蛋白聚糖。这些成分由神经元和神经胶质细胞分泌。它占大脑量的20%,但尚未受到神经科学研究社区的要求。到目前为止,大多数研究重点都放在神经元或神经胶质细胞成分上。细胞外系统在脑部疾病的病因和进展中的作用,反之亦然,神经系统疾病如何影响细胞外基质的影响仍然很大程度上没有探索。已知ECM在神经发育过程中起多种作用,但是其在人脑的发展中的作用尚未完全了解。由周围神经元网(PNN)组成的凝结ECM形成细胞体周围的网状结构和神经元近端神经突(Sigal等,2019)。在神经系统开发过程中,ECM调节神经祖细胞的增殖和不同。它还控制细胞形态,包括轴突和树突伸长,调节其连通性和皮质折叠。此外,ECM还存储了创建微域以调节神经元迁移和突触可塑性的信号因子(Dityatev等,2010; Dick等,2013)。PNN被认为充当分子制动,可关闭和调节突触可塑性的关键时期(Dityatev等,2010; Wang和Fawcett,2012)。因此,ECM功能障碍,尤其是PNN损伤与几种神经发育障碍有关,例如自闭症谱系障碍,精神分裂症,双相障碍,易碎X综合征和癫痫病(Reinhard等,2015; Rogers等,2015; Rogers等; Rogers等,2018; Wen et al。,2018)。关于神经退行性疾病的数十年研究表明,神经元死亡增加了,但神经元不良健康背后的机制远非明显。尚未详细研究垂死细胞周围额外细胞基质的功能和功能。最近,在帕金森氏病啮齿动物模型中报道了神经变性,额外的细胞空间和基质之间的相互作用,该模型在被忽视的隔室中散发出灯,以分散聚集的α-舌核蛋白种子(Soria等,2020)。正如Pinter和Alpar最近回顾的那样,选择性ECM组件可以主动触发特定于疾病的有毒物质,或在ECM中反应地积累它们(Pinter and Alpar,2022)。几项研究已关联
导师的夏季研究机会-2025 Jan P G Bergmanson,OD,博士,D.Sc。- 德克萨斯州眼科技术中心提供了许多有趣的机会。我们正在研究巩膜气体可渗透的隐形眼镜佩戴者,反射后手术患者和患有前部病理学的患者。此外,我们还使用光和电子显微镜在细胞和亚细胞水平上进行眼科解剖和病理研究。在这些研究中,研究利用角膜成形术手术手术中的人体尸体和角膜按钮。这些标本将允许研究正常解剖结构,例如角膜结构,黄斑,颗粒,晶状体和富克斯内皮疾病,其中一些是罕见的异常。您可能会成为这一团队努力的一部分。Han Cheng,OD,博士学位 - 我的一般研究兴趣在于增强眼和视觉状况的诊断和管理。 我目前正在研究两个研究项目:第一个探讨了人工智能(AI)工具在初级眼保健中的应用,而第二个则继续我们对Spotchecks进行调查,这是一种新的对比敏感性测试,在眼部疾病患者中。 Vivien Coulson -Thomas,PhD-我实验室的主要兴趣涉及细胞外基质(ECM)及其如何调节眼表面的发育,稳态,衰老和病理过程,目的是开发新疗法。 我们的实验室利用各种转基因小鼠模型和人体组织。Han Cheng,OD,博士学位 - 我的一般研究兴趣在于增强眼和视觉状况的诊断和管理。我目前正在研究两个研究项目:第一个探讨了人工智能(AI)工具在初级眼保健中的应用,而第二个则继续我们对Spotchecks进行调查,这是一种新的对比敏感性测试,在眼部疾病患者中。Vivien Coulson -Thomas,PhD-我实验室的主要兴趣涉及细胞外基质(ECM)及其如何调节眼表面的发育,稳态,衰老和病理过程,目的是开发新疗法。我们的实验室利用各种转基因小鼠模型和人体组织。当前可用的项目包括(1)确定缘干细胞易裂如何保持生存的边缘干细胞,(2)研究ECM如何调节角膜再生,炎症和病理血管生成,((3)建立Meibomian腺体功能障碍(MGD)的病因(MGD),并促进了(4)的疾病和(4),并促成了(4)疾病的疾病和(4)疾病。从事这两个项目中的任何一个工作的学生都将在各种细胞生物学技术中获得动手经验,包括原发性和已建立的细胞系培养,组织学,免疫荧光,蛋白质纯化,蛋白质纯化,蛋白质印迹,分子生物学,成像,图像分析,图像分析和高压液体色谱法。Luca Della Santina,PharmD,PhD-我的实验室重点是确定眼部疾病期间视网膜功能和突触连通性发生的变化。项目包括:1)使用共聚焦显微镜在视网膜中发生的突触重排的成像和量化。Tarsis Gesteira Ferreira,MSC。我们积极操纵细胞外基质(ECM)蛋白来探索其在发育,体内平衡,衰老和影响眼表面的各种病理状况中的作用。我们当前的项目包括(1)工程富含亮氨酸的蛋白聚糖,以了解它们在组织角膜外基质中的功能,并增强其对诸如TGF-B1,Vegfrii,Electins,intemins和tgfbrii等关键分子的亲和力; (2)开发靶向多重
缩写:ANG,血管生成素;ANXA1,膜联蛋白A1;ATP,三磷酸腺苷;ATRA,全反式维甲酸;BCC,乳腺癌细胞;BDL,胆管结扎;BSA,牛血清白蛋白;BXPC-3,胰腺癌细胞系;CAF,癌相关成纤维细胞;CAP,可裂解两亲肽;CD26,二肽基肽酶-4;CD,分化簇;CLSM,共聚焦激光扫描显微镜;CM-101,胶原蛋白靶向探针;CPP,细胞穿透肽;CSC,癌症干细胞;CTC,循环肿瘤簇;CXCR,趋化因子受体;DCE,动态对比增强;DGL,树枝状移植聚-L-赖氨酸; DOTA,2,2 0,2 00,2 000-(1,4,7,10-四氮杂环十二烷-1,4,7,10-四基)四乙酸;DOX,阿霉素;DRP,损伤反应程序;DTPA,二乙烯三胺五乙酸酯;EA,鞣花酸;ECM,细胞外基质;EGFR,表皮生长因子受体;EMT,上皮-间质转化;EPR,增强渗透和滞留;ER,雌激素受体;FAK,粘着斑激酶;FAP,成纤维细胞活化蛋白;FAPI,FAP 抑制剂;FDA,食品药品监督管理局;FDG,氟脱氧葡萄糖;FITC,异硫氰酸荧光素;FOLFIRI,5-氟尿嘧啶,亚叶酸,伊立替康; FOLFIRINOX,5-氟尿嘧啶、亚叶酸钙、伊立替康和奥沙利铂的组合;FPR2,甲酰肽受体 2;FSP1,成纤维细胞特异性蛋白 1;FU,5-氟尿嘧啶;GA,18b-甘草次酸;GBq,千兆贝克勒尔;GEM,吉西他滨;GPER,G 蛋白偶联雌激素受体;GSH,谷胱甘肽;HA,透明质酸;HBSS,汉克斯平衡盐溶液;HER2,人表皮生长因子受体 2;HGF,肝细胞生长激素;HIF,缺氧诱导因子;HRCT,高分辨率计算机断层扫描;HSA,人血清白蛋白;HSP47+,热休克蛋白 47; HSPG2,硫酸肝素蛋白聚糖 2;HSTS26T,人软组织癌;HSV,单纯疱疹病毒;ID/g,每克注射剂量;IFN,干扰素;IFP,间质液体压力;IGF1,胰岛素样生长因子;IL,白细胞介素;IPF,特发性肺纤维化;IPI-926,Hedgehog 通路抑制剂;ITGA11,整合素亚基 α 11;ITGA5,整合素亚基 α 5;JAK,Janus 激酶;JNK,Jun N - 末端激酶;KPC,胰腺导管腺癌的临床相关模型;KRAS,Kirsten 大鼠肉瘤病毒;LCP,脂质磷酸钙纳米颗粒;LOXL2,赖氨酰氧化酶样 2; LPD,脂质包被的鱼精蛋白 DNA 复合物;LPP,脂肪瘤首选伴侣;LST-Lip,氯沙坦包裹的脂质体;LXA4,脂氧素 A4;MAPK,丝裂原活化蛋白激酶;MCT4,单羧酸转运蛋白 4;MET,肝细胞生长因子受体;MHC,主要组织相容性复合体;MMP,基质金属蛋白酶;MPS,单核吞噬细胞系统;MRI,磁共振成像;MSC,间充质干细胞;mTOR,哺乳动物雷帕霉素靶蛋白;MU89,人黑色素瘤;NF,正常成纤维细胞;NH 2,胺基;NK,自然杀伤细胞;NO 2,一氧化氮;NODAGA,1,4,7-三氮杂环壬烷,1-戊二酸-4,7-乙酸;NP,纳米粒子;NSCLC,非小细胞肺癌;PAMAM,聚酰胺胺;PD-1,程序性细胞死亡蛋白 1;PDAC,胰腺导管腺癌;PDGF,血小板衍生生长因子;PDGFR,PDGF 受体;PDT,光动力疗法;PDX,患者来源的异种移植;PEG,聚乙二醇;PEGPH20,重组人透明质酸酶 PH20 的聚乙二醇化形式;PET,正电子发射断层扫描;PFT,周细胞向成纤维细胞转变;PGE2,前列腺素 E2;PP,聚乙二醇-聚己内酯;PSC,胰腺星状细胞;PSMA,前列腺特异性膜抗原;PTC,乳头状甲状腺癌;PTX,紫杉醇; QD,量子点;QP,槲皮素磷酸盐;RGD,三肽精氨酸-甘氨酸-天冬氨酸;RNA,核糖核酸;ROCK,Rho 相关蛋白激酶;ROS,活性氧;RUNX3,Runt 相关转录因子 3;SATB,特殊 AT 富集序列结合蛋白 1;SBRT,立体定向放射治疗;SDF-1,基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体; TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1;VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献均等。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。