摘要 - 大气光散射包含复杂的物理过程,包括各种散射机制和光学参数。应对破译这种现象的计算密集任务所带来的挑战,这项研究引入了有效的实时仿真策略。所提出的方法采用物理驱动的大气建模,利用统一的相位函数模仿瑞利和MIE散射现象。使用射线制定的概念来解决散射积分,将散射积分近似并离散。基于不同光源的特征,确定了准确的射线建设长度,从而简化了光路的计算轨迹。此外,纹理抖动的引入增强了初始采样位置的随机性。阴影地图算法擅长生成阴影映射纹理,从而消除了阴影区域内的光计算的需求,从而减少了样本数量和计算工作负载。最后,颜色合成用于确定在各种雾密度条件下大气的渲染颜色。实验结果表明,与其他先进的光散射渲染方法相比,这种方法可显着提高渲染效率,并实现实时渲染,同时保持逼真的光散射效果。
近 年 来 , 预 训 练 语 言 模 型 已 逐 渐 成 为 自 然 语 言 处 理 领 域 的 基 座 模 型 。 相 关 实 验 现 象 表 明 , 预 训 练 语 言 模 型 能 够 自 发 地 从 预 训 练 语 料 中 学 到 一 定 的 语 言 学 知 识 、 世 界 知 识 和 常 识 知 识 , 从 而 在 知 识 密 集 型 任 务 上 获 得 出 色 的 表 现 ( AlKhamissi et al., 2022 ; Safavi and Koutra, 2021 ; Petroni et al., 2019 ) 。 然 而 , 预 训 练 语 言 模 型 中 的 知 识 隐 式 地 存 储 在 参 数 之中 , 难 以 显 式 地 对 预 训 练 语 言 模 型 中 的 知 识 进 行 分 析 和 利 用 。 同 时 , 预 训 练 语 言 模 型在 知 识 和 推 理 上 的 表 现 并 不 可 靠 , 常常 会 出 现 “ 幻 觉 ” 现 象 ( Ji et al., 2022 ) , 给 出 与 知 识 冲 突 的 预 测 结 果 。 这 些 因 素 阻 碍 了 预 训 练 语 言 模 型 提 供 可 靠 的 知 识 服 务 。 因 此 , 探 究 模 型 掌握 知 识 的 机 理 、 研 究 如 何 提 取 和 补 充 语 言 模 型 中 的 知 识 成 为 近 期 的 研 究 热点 。 本 次 讲 习 班 主 要 内 容 包 括 预 训 练 语 言 模 型 中 的 知 识 分 析 、 预 训 练 语 言 模 型 的 知 识 萃 取 、 知 识 增 强 的 预 训 练 语 言 模 型 三个 部 分 , 听 众 将 在 本 次 讲 习 班 中了 解 到 近 期 研 究 中 对 预 训 练 语 言 模 型 掌握 知 识 情 况 的 认识 、 从 预 训 练 语 言 模 型 中 提 取 符 号 知 识 的 实 现 方 案 、 利 用 外 部 知 识 增 强 模 型 弥 补 缺 陷 的 各 类 方 法 。
VISIJET® 铸造蜡 这些材料的熔点比传统蜡低,产生的熔融蜡没有灰分或残留物。此外,这些蜡不需要用石蜡密封剂进行精加工。由于这些优势,VisiJet® 100% 蜡材料经常用于熔模铸造工艺。这种蜡是珠宝和矫形外科铸造应用的首选材料,因为它可以实现更清洁、更光滑的表面、更高的精度和更高质量的表面光洁度。
摘要 积累在植物组织和结构(如腺毛和薄表皮层)表面的化合物被定义为渗出物、外部化合物和浅表化合物。它们表现出重要的保护活性——抗真菌、抗菌、拒食昆虫、杀幼虫、抗疟原虫和防紫外线。评估了从蜡菊花中获得的渗出物对黑麦草种子发芽和初始胚根伸长的抑制活性。该实验在培养皿中体外进行。在水-丙酮混合物(99.5:0.5)中,以 1、3、5、7 和 10 mg/mL 的浓度测定渗出物。用 GC/MS 分析渗出物的化学成分。发现浓度为 5 mg/mL 的渗出液可导致 90% 以上的种子发芽抑制。在相同浓度下,观察到根部生长被完全抑制。分泌物的主要生物活性成分被鉴定为黄酮苷元-柚皮素。本研究首次研究了H. arenarium对种子发芽的抑制活性。
尽管如此,由于文献或材料供应商数据表中关于材料高温 CHS 的报道非常少,因此湿气引起的应力大多被忽略。这是由于缺乏有效的测量方法和该领域的技术知识 [5]。由于测量过程中湿气会快速蒸发,因此测量高温膨胀具有挑战性。市售工具,如带相对湿度附件的动态机械分析仪 (DMA-RH) [5, 6],其温度能力有限,最高可达 85 !C,而典型的无铅焊料回流工艺可高达 260 !C。更高温度的测量在技术上具有挑战性。需要更高的压力来将湿气保持在高温下的液态,而使用当今的标准工具根本无法实现。一种更流行的方法是使用标准热机械分析仪 (TMA) 设备来测量加热时饱和样品的应变。快速解吸会导致湿气分布不均匀。因此,假设应变为平均应变。需要进行额外的水分质量校正后处理分析来补偿水分损失。据报道,这种方法往往会高估 CHS [2, 4]。此外,一些研究建议避免使用基于解吸的方法,因为某些材料可能具有不可逆的吸湿膨胀特性 [7]。另一种尝试过的方法是莫尔干涉法 (MI) [8, 9],它具有良好的准确性和可重复性。然而,它有固有的局限性,因为在样品表面复制的耐腐蚀光栅会导致测量误差,尤其是对于薄样品。此外,所有这些都是
摘要 - 输入法是各个领域中使用最广泛的研究技术之一。通过在光纤上实施干涉仪,光纤干涉仪(FOIS)在过去的四十年中已经获得了巨大的生长和进步,并已探索以测量各种物理,化学,化学和生物学参数。FOI通常是使用单模纤维(SMF)构建的,并使用具有紧密控制的极化状态(SOP)在光学结构域中询问,以确保促进感应应用的高质量干扰信号。单模操作以及SOP的严格要求阻碍了敌人的进一步发展,例如,基于多模纤维(MMF)基于基于的FOI。在本文中,我们介绍了基于光纤的微波光子干涉仪的全面研究,该研究基于最近开发的技术,基于光载体的微波干涉仪(OCMI)。由OCMI审问(即微波炉干涉仪)启用了所提出的感应配置,从本质上讲,通过在微波域中读取FOIS来克服传统FOI的两个限制方面。微波炉干涉仪对光载体SOP的变化免疫,并且对光纤类型(SMFS和MMF)的依赖性较低。我们提出了微波仪干涉系统的完整数学模型。使用SMF和多模聚合物光纤的应变测量验证了所提出的系统的传感能力。然后,使用三种不同类型的干涉仪进行验证,包括Mach-Zehnder干涉仪,Fabry-Perot干涉仪和基于SMFS和MMFS的Michelson干涉仪。微波仪的干涉构构可以在各种传感应用中进一步扩展FOIS的路径。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2024年8月9日发布。 https://doi.org/10.1101/2024.08.08.607260 doi:biorxiv preprint
本文介绍了一种具有集成多模干涉耦合器的新锥形半导体激光器。新激光器的种子来源是多模干扰耦合器半导体激光器,它克服了脊方波导区域中单模式输出与增益中等体积之间关系所带来的局限性。The simulation results show that the multi-mode interference coupler can effectively provide a spatial single- mode seed light source for the tapered output waveguide, and the tapered output waveguide of the tapered semiconductor laser can also effectively reduce the optical power density of the output laser, which verifies the feasibility of the design scheme and provides a new idea for the design of high beam quality and high power tapered半导体激光器。
背景:基因操作在微生物中有着广泛的应用。通过基因操作和基因编辑,可以构建多功能菌株,同时生产包括酶在内的多种工业生物材料。目的:根据纤维素酶在包括食品工业在内的各个行业中的重要性,本研究旨在通过基因操作在土著蜡状芽孢杆菌EG296菌株中生产纤维素酶。材料与方法:采用SOEing PCR扩增位于蜡状芽孢杆菌蛋白酶基因(aprE)调控上游和下游区域之间的枯草芽孢杆菌168纤维素酶基因,并通过自然转化转化为蜡状芽孢杆菌EG296。在筛选出具有纤维素酶活性的菌株后,通过同源重组从转化子的基因组中删除scoC基因(aprE基因的负转录调控因子),以同时提高纤维素酶和蛋白酶活性。结果:蜡状芽孢杆菌基因组中引入纤维素酶基因,纤维素酶活力约为0.61 u.mL -1 。通过scoC基因缺失,蛋白酶活力由230 u.mL -1 提高到363.14 u.mL -1 ,同时,在蛋白酶启动子调控下的纤维素酶活力也由0.61 u.mL -1 提高到0.78 u.mL -1 。蜡状芽孢杆菌表达的纤维素酶和蛋白酶的不稳定性指数分别为26.16和20.18,远低于40的阈值,因此两种酶均比较稳定。结论:获得了1株能够生产和分泌两种重要工业胞外酶(纤维素酶和蛋白酶)的基因工程菌株,且后续纯化工艺简单。
图 3.29:升降舵偏转信号 ...................................................................................................... 37 图 3.30:方向舵偏转信号 ...................................................................................................... 37 图 3.31:沿 X 方向的速度 B(“u”) ............................................................................................. 38 图 3.32:沿 Y 方向的速度 B(“v”) ............................................................................................. 38 图 3.33:沿 Z 方向的速度 B(“w”) ............................................................................................. 38 图 3.34:滚转速率(“p”) ............................................................................................................. 39 图 3.35:俯仰速率(“q”) ............................................................................................................. 39 图 3.36:偏航速率(“r”) ............................................................................................................. 39 图 3.37:滚转角度(“Phi”) ............................................................................................................. 40 图 3.38:俯仰角度(“Theta”) ........................................................................................... 40 图 3.39:偏航角(“Psi”)................................................................................................... 40 图 3.40:迎角