我们设计了一种独特的纳米胶囊,用于有效的单个CRISPR-CAS9胶囊,无创脑递送和肿瘤细胞靶向,这表明了胶质母细胞瘤基因治疗的有效且安全的策略。我们的CRISPR-CAS9纳米胶囊可以通过将单个Cas9/sgrna络合物封装在谷胱甘肽敏感的聚合物壳中,从而融合了双效性配体,从而有助于BBB渗透,肿瘤细胞靶向,以及Cas9/sgrna选择性释放。我们封装的纳米胶囊证明了有希望的胶质母细胞瘤组织靶向,导致脑肿瘤(高达38.1%)的高PLK1基因编辑效率,而高风险组织中的靶向基因编辑可忽略不计(小于0.5%)。用纳米胶囊治疗中位生存时间(在非功能性SGRNA处理的小鼠中为68天对24天)。我们的新的CRISPR-CAS9输送系统解决了各种挑战,以证明基因编辑Cas9核糖核蛋白的安全和肿瘤特异性递送,以改善胶质母细胞瘤治疗,这可能在其他脑部疾病中有可能有用。
血脑屏障 (BBB) 是分子和药物的有效屏障。多细胞 3D 球体显示出可重现的 BBB 特征和功能。这里使用的球体由六种脑细胞类型组成:星形胶质细胞、周细胞、内皮细胞、小胶质细胞、少突胶质细胞和神经元。它们形成体外 BBB,调节化合物进入球体的运输。通过共聚焦激光扫描显微镜研究了荧光超小金纳米粒子(核心直径 2 纳米;流体动力学直径 3-4 纳米)在 BBB 中的渗透随时间的变化,以溶解的荧光染料 (FAM-炔烃) 作为对照。纳米粒子很容易进入球体内部,而溶解的染料本身无法穿透 BBB。我们提出了一个模型,该模型基于纳米粒子随时间打开 BBB,然后快速扩散到球体中心。当球体经历缺氧(0.1% O 2 ;24 小时)后,血脑屏障的通透性增强,允许更多的纳米颗粒和溶解的染料分子被吸收。结合我们之前观察到的这种纳米颗粒可以轻松进入细胞甚至细胞核,这些数据证明超小纳米颗粒可以穿过血脑屏障。
摘要:脂质纳米颗粒 (LNP) 介导的核酸疗法,包括 mRNA 蛋白质替代疗法和基因编辑疗法,在治疗神经系统疾病(包括神经退行性疾病、脑癌和中风)方面具有巨大潜力。然而,全身给药后将 LNP 递送至血脑屏障 (BBB) 仍未得到充分探索。在这项工作中,我们设计了一个用于 BBB (HTS-BBB) 的高通量筛选 transwell 平台,专门针对筛选 mRNA LNP 进行了优化。与大多数仅评估跨内皮单层运输的 transwell 检测不同,HTS-BBB 同时测量 LNP 运输和内皮细胞本身的 mRNA 转染。然后,我们使用 HTS-BBB 筛选由结构多样的可电离脂质制成的 14 个 LNP 库,并通过验证静脉注射后将 mRNA 递送到小鼠大脑的主要候选物来证明它可以预测体内性能。展望未来,该平台可用于筛选大量针对大脑的 LNP 库,以用于一系列蛋白质替代和基因编辑应用。关键词:脂质纳米颗粒、mRNA、脑输送、血脑屏障
1扬兹大学健康科学中心医学成像系,中国434023; mengyun-duan@yangtzeu.edu.cn(M.D.); chen_xg@yangtzeu.edu.cn(X.C。)2中国武汉430070的惠汉省孕产妇和儿童健康医院麻醉学系; zijun_wu@whu.edu.cn 3武汉大学武汉人民医院放射科,中国430060; rm003237@whu.edu.cn 4扬兹大学健康科学中心药理学系,中国434023; liulian@yangtzeu.edu.cn 5 NUS癌症研究中心(N2CR),新加坡新加坡国立大学,新加坡国立大学,新加坡117599; phcgbc@nus.edu.sg 6 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore 7 Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore 8 Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore * Correspondence: boxuren@yangtzeu.edu.cn(B.R.); csiwl@nus.edu.sg(l.w.)†这些作者为这项工作做出了同样的贡献。
血脑屏障 (BBB) 是脑与外周循环之间的动态脑屏障。血脑屏障由脑毛细血管内皮细胞、周细胞和星形胶质细胞端足组成,可有效保护脑免受血液中有害毒素和病原体的侵害 (1,2)。血肿瘤屏障 (BTB) 是指位于脑微血管附近的改良血脑屏障,这种屏障是由于原发性脑肿瘤(包括神经母细胞瘤和其他内脏癌症,如肺癌、乳腺癌、黑色素瘤等)的存在导致神经血管单元发生变化而形成的 (3)。血脑屏障中 P-糖蛋白 (P-gp) 的表达可防止不必要的血液毒素和信号分子进入脑 (4-6)。这种复杂的结构不仅维护脑稳定性,而且还保护脑免受外界因素的影响。另一方面,当脑部出现病理改变时,药物可能难以穿透BBB和BTB屏障,使得药物治疗脑部疾病变得困难(7-9)。
对准时,并非所有三个螺栓都能安装到位,例如,在 1° 的微小、可能难以察觉的偏航情况下,只有一个螺栓能安装到位,而
摘要 转铁蛋白受体 (TfR) 介导的跨血脑屏障 (BBB) 转胞吞作用是一种有前途的策略,可改善生物制剂向中枢神经系统 (CNS) 的输送。然而,年龄和与衰老相关的疾病是否会影响 TfR 表达和/或 BBB 转运能力仍不清楚。在这里,我们使用 TfR 靶向抗体转运载体 (ATV TfR) 来增强健康小鼠和阿尔茨海默病 (AD) 的 5xFAD 小鼠模型中的 CNS 输送。健康新生儿表现出最高的血管 TfR 表达和 ATV TfR 脑暴露,而 BBB 转运能力在成年期保持稳定。此外,5xFAD 小鼠的 TfR 表达和 ATV TfR 脑摄取均未发生显着变化。此外,AD 患者大脑中的血管 TfR 表达与年龄匹配的对照组相似,这表明 TfR 转运可能在人类 AD 中得到保留。在小鼠早期发育过程中观察到 TfR 介导的脑内输送增多,这表明利用 TfR 平台治疗儿童早期疾病具有更高的疗效。成年小鼠在健康老龄化和 AD 模型中 ATV TfR 转运的保留支持 TfR 平台在与年龄相关的疾病中继续应用。简介血脑屏障 (BBB) 的高度限制性对许多小分子和几乎所有大分子向中枢神经系统 (CNS) 的输送构成了重大挑战 (1-3)。由于全身给药的 IgG 通常只有 0.01-0.1% 能进入 CNS (4),开发利用主动转运机制和受体介导的从脑内皮细胞 (BEC) 管腔(血液)到管腔外(脑)的转胞吞作用 (RMT) 的新型 IgG 神经治疗药物已成为一个主要研究领域 (4-6)。具体来说,多个研究小组证明,通过工程化结合转铁蛋白受体 1 (TfR) 可显著提高啮齿动物 (7-14) 和非人类灵长类动物 (14, 15) 中枢神经系统大分子递送的效率。尽管这些努力前景看好,但尚不清楚广泛年龄范围内的健康老龄化以及神经退行性疾病(例如阿尔茨海默病 (AD))的存在是否以及如何影响 TfR 介导的血脑屏障运输。在健康成人老龄化过程中,除了血管神经单元的重组 (19) 之外,血脑屏障还会经历各种结构、代谢、炎症和运输相关的变化 (16-18)。这些变化可能会改变 TfR 循环速率和/或用于跨血脑屏障运输 TfR 的内吞机制。此外,BEC 的转录和蛋白质组学变化在 AD 的背景下已得到充分证实 ( 20-24 ),这可能会进一步影响 TfR 靶向疗法向中枢神经系统的输送。此外,在健康老龄化中,由于脑屏障完整性受损和/或功能障碍,中枢神经系统屏障通透性可能会增加 ( 17, 19,25 ) 和 AD ( 19, 26 )。所有这些因素都有可能影响基于 RMT 的 CNS 药物输送的有效性。因此,了解年龄和 AD 如何影响这些情况下的 TfR 介导的运输以及 CNS 通透性对于评估基于 TfR 的 BBB 运输平台的实际效用至关重要,其中许多平台目前正在进行临床评估 ( 27, 28 )。
不幸的是,如今,脑部疾病(包括神经和精神疾病)是全世界范围内导致残疾的主要原因。一些严重疾病的发病率和死亡率都很高。然而,过时的技术基础设施使得治疗这些疾病变得困难。血脑屏障 (BBB) 是中枢神经系统 (CNS) 的保护机制,调节其稳态过程。大脑受到一个极其复杂的系统的保护,免受伤害和疾病的侵袭,该系统精确调节离子、极少量微小分子以及更少数量的大分子从血液流向大脑。然而,血脑屏障也大大抑制了药物向大脑的输送,使得无法治疗各种神经系统疾病。目前正在研究几种策略来增强药物在血脑屏障上的运输。根据这项研究,纳米粒子是治疗脑部疾病最有希望的药物之一,虽然许多传统药物也能够穿过这一屏障,但
脑肿瘤是未满足医疗需求中最具挑战性和最困难的领域之一。肿瘤靶向和脑部药物输送系统可增加药物在肿瘤区域的积累,同时降低正常脑和外周组织中的毒性,是一种很有前途的脑肿瘤治疗方法。当脑肿瘤表现出相对于外周组织中生长的肿瘤的许多显着特征时,可以利用基于不断变化的血管特征和微环境的潜在靶点来促进有效的脑肿瘤靶向药物输送。在本综述中,我们简要描述了脑肿瘤的生理特征,包括血脑屏障/脑肿瘤屏障、肿瘤微环境和肿瘤干细胞。我们还在综述中讨论了靶向输送策略,并介绍了一种系统的靶向药物输送策略来克服这些挑战。在血脑屏障存在的情况下,药物向中枢神经系统输送的一个令人不安的事实是,血脑屏障往往会损害药物分布,并表明中枢神经系统药物开发的一般障碍。神经肽和许多其他亲水性药物在通过血脑屏障时可能会涉及复杂性。输送药物的净量及其进入相关靶位的能力是 CNS 药物开发的主要考虑点。在本综述中,我们将讨论针对大脑部位的方法。
治疗MND的主要障碍是血脑屏障,这是血液和大脑之间的保护性衬里,可防止大多数药物进入大脑。该项目的研究人员正在开发一种克服这一障碍的方法,以便针对SOD1 MND的新的,令人兴奋的遗传药物,可以有效地到达大脑中的运动神经元。他们的开创性方法是将遗传药物连接到允许其通过血脑屏障转移并促进运动神经元健康的分子。