指示1。在烤箱中间放置一个架子,然后加热至400°F。2。用低火加热2汤匙油。搅拌大蒜,牛至,红辣椒和柠檬皮,并用低火搅拌2分钟。搅拌葡萄酒和柠檬汁,使混合物在非常低温下保持温暖。3。同时,将虾干燥,然后转移到有边缘的烤盘上。撒上剩余的1汤匙油,慷慨地撒上盐和黑胡椒,倒入均匀的涂层,然后撒成均匀的层。4。烤,搅拌一半,直到它们变成粉红色和不透明,总共6至8分钟。5。从烤箱中取出虾,用柠檬和牛至酱转移到平底锅中,然后将其拌匀。立即在煮熟的意大利面,米饭,蒸粗麦粉或奶油玉米粥上食用。
量子游走算法原则上是一种主要用于在图中搜索标记顶点的搜索算法。量子游走的灵感来自经典马尔可夫链(经典随机游走),但量子游走中没有任何随机性。与经典算法相比,量子游走算法利用叠加能力在计算上实现了二次加速。在这个项目中,我们将简要介绍经典马尔可夫链,以类比量子游走,然后介绍硬币空间和硬币运算符的概念,它们决定了游走者的每一步。之后,我们将研究该算法的数学公式,并在 4 维超立方体上实现它。算法的电路因情况而异,在这个项目中,我们将实现它来搜索超立方体上的标记索引。
摘要 芳香性是物理学和化学中众所周知的现象,是芳香分子许多独特化学和物理性质的原因。多环芳烃稳定性的主要特征是每个 N 碳原子的 2 个 pz 轨道中的离域 π 电子云。虽然已知电子在杂化的 sp 2 轨道之间离域,但本文提出量子行走作为离域发生的机制,并得出这些分子的功能化学结构如何自然地从这种结构中产生。我们介绍了对一些苯并多环芳烃进行的计算结果,并表明基于量子行走的方法确实可以正确预测所考虑分子的反应位点和稳定顺序。
对粒子进行离散时间量子游动演化时,由于系统噪声的影响,游动态容易出现误差。该研究提出了一种基于双格子Bose-Hubbard模型的多粒子量子游动误差修正算法。首先,根据局域欧氏生成元构造两点Bose-Hubbard模型,并证明模型中的两元素可以任意替换。其次,利用Bethe假设方法得到了模型中粒子的跃迁强度与纠缠度的关系。第三,对量子格子的位置进行编码,构造量子态交换门。最后,通过将游动器切换到量子纠缠码的格点上,进行格点上的量子游动状态替换,再次进行替换。对双格子Bose-Hubbard模型中的量子粒子的纠缠进行了数值模拟。当粒子间相互作用与粒子跃迁强度的比值接近于0时,利用该算法可以实现模型中量子粒子的纠缠操作。根据Bose-Hubbard模型的性质,粒子纠缠后可以实现量子行走纠错。本研究引入流行的restnet网络作为训练模型,使纠错电路的解码速度提升约33%。更重要的是,卷积神经网络(CNN)解码器的下限阈值由传统最小权重完美匹配(MWPM)下的0.0058提升到0.0085,实现了高容错率的量子行走稳定行进。
高血压和2型糖尿病(T2DM)是已知的生活方式疾病,具有常见的病理生理途径,尤其是在患有代谢综合征的患者中。1估计,T2DM的几乎三分之二的人口也受到高血压的影响。1微和宏血管危险因素的共存导致心血管疾病的风险增加了四倍。2 T2DM和高血压同时患病率的大小取决于年龄,体重指数(BMI)和种族。在T2DM患者中,高血压通常会早早出现,并与其他心血管危险因素结合使用。 3当前,加纳的T2DM患病率一直在增加。 4最近的一项基于人群的研究的报告表明,加纳成年人中有3.3%至6%患有糖尿病(DM)。 5国际糖尿病联合会(IDF)的另一份报告表明,截至2014年,总共有4.5万加纳人患有该疾病,据估计,到2035年,成人的死亡率为8.6%。 6发现高血压率高于低水平的意识,药物治疗和血压控制。 7高血压,血压(BP)≥140/90mmHg和≥160/95mmHg的患病率分别为25.4%和15.2%。 大约32.3%的高血压患者知道他们的血压高。 患有高血压的患者中,只有16.7%的血压受到控制(<140/90 mmHg)。 7在T2DM患者中,高血压通常会早早出现,并与其他心血管危险因素结合使用。3当前,加纳的T2DM患病率一直在增加。4最近的一项基于人群的研究的报告表明,加纳成年人中有3.3%至6%患有糖尿病(DM)。5国际糖尿病联合会(IDF)的另一份报告表明,截至2014年,总共有4.5万加纳人患有该疾病,据估计,到2035年,成人的死亡率为8.6%。6发现高血压率高于低水平的意识,药物治疗和血压控制。7高血压,血压(BP)≥140/90mmHg和≥160/95mmHg的患病率分别为25.4%和15.2%。大约32.3%的高血压患者知道他们的血压高。患有高血压的患者中,只有16.7%的血压受到控制(<140/90 mmHg)。7
自虚拟现实诞生之初,在比参与者操作的物理空间更大的虚拟环境中移动一直是一项挑战。已经提出了许多不同的方法,例如基于操纵杆的导航、原地行走(参与者进行行走动作但在物理空间中静止不动)以及重定向行走(环境被秘密改变,给人一种在虚拟空间中走长直线但在物理空间中可能走圆圈的错觉)。每种方法都有其局限性,从模拟器晕动症到仍然需要比可用空间更多的物理空间。受 COVID-19 封锁的刺激,我们开发了一种新的运动方法,我们称之为交互式重定向行走。在这里,参与者真的在走路,但当到达边界时,会旋转虚拟世界,以便继续行走始终在物理边界内。我们进行了一项探索性研究,使用问卷以及基于参与者撰写的评论的定性反应(经过情绪分析),将这种方法与原地行走在存在感方面进行了比较。令人惊讶的是,我们发现较小的物理边界有利于交互式重定向行走,但对于长度超过大约 7 个成人步长的边界,原地行走方法是更可取的。
量子信息及其与组合学的相互作用。本书在某种程度上是这些问题的进展报告。对我们来说,最大的惊喜是代数图论工具的实用程度。因此,我们对此的处理比严格必要的更详细。其中一些是标准的,一些是旧东西,一些是为处理量子游动而开发的新材料(例如,可控性,强同谱顶点)。但组合学并不是万能的:我们还会遇到李群、各种数论和几乎周期函数。(因此,第二个惊喜是与我们的主题纠缠在一起的不同数学领域的数量。)我们在这里不处理离散量子游动(参见 [ ? ])。我们不处理量子算法或量子计算,也不处理有关复杂性、误差校正、非局部游戏和量子电路模型的问题。我们讨论了一些相关的物理学。我们重点关注那些在数学上有趣且具有一定物理意义的问题,因为这种重叠往往预示着成果丰硕。许多人对这些笔记提出了有益的评论,包括 Dave Witte Morris、Tino Tamon、Sasha Jurišic 及其研讨会成员 Alexis Hunt、David Feder、Henry Liu、Harmony Zhan、Nicholas Lai、Xiaohong Zhang、Soffia Arnadottir、Qiuting Chen……