倾斜是部分填充的储层中液体的运动。建模和控制这种现象对于登陆液体推进剂的空间系统的稳定性和性能至关重要。倾斜被确定为在近地球小行星会合(近)任务中观察到的效率低下的动量阻尼的主要原因,并怀疑是上层阶段不稳定的原因,这是使2007年失去猎鹰1任务的上层不稳定。此外,将人类带回月球及以后的太空探索的新趋势是需要更大的液体推进液罐面对更长的任务。这在安全性和操纵控制性能方面提出了新的挑战。如今,只有计算流体动力学(CFD)模型才能捕获微功能条件下的斜率现象,其中表面张力力在重力上占主导地位,并且对地球上的表面形成不同。但是,这种数值方法在计算上太昂贵了,无法通过保证的稳定性和性能证书来利用基于模型的反馈控制合成。此外,晃动也可以与柔性附属的自然振荡模式相互作用(即太阳能电池板,机器人臂,天线)并大大放大。该博士的目标是多学科的,旨在最终加入非常不同的研究领域(流体动力学,多体型建模和自动控制)的路径。最终目标是提供一个通用框架,以实时正确模拟微实力中宽恕现象的耦合效应,并在反馈控制下具有复杂的灵活空间结构的振动效果。许多应用程序仍在开放的应用程序:精细的任务,会合和对接(用于加油),积极的碎屑清除和发射器沿海阶段。
1 简介:长期太空居住将需要在先进制造、热控制和生命支持过程方面进行变革性改进[1][2][3]。先进制造工艺包括金属和金属合金的增材制造、软物质、金属的定向能量沉积和晶体生产等[4]。热控制过程包括管理电子设备、太空核反应堆、电池和生命支持系统的热量释放。这些过程对于国际空间站、月球表面的居住地以及涉及美国宇航局科学任务理事会 (SMD) 和人类探索的所有太空计划都很重要[5]。由于对部署在轨道上或月球表面的硬件和空间模块的访问有限,系统的设计和开发几乎没有或根本没有误差余地。迭代之间的时间需要结合基于合理理论模型或机器学习算法的模拟。随着太空计划越来越深入太阳系,预先了解材料和系统的行为变得越来越重要。了解系统行为(尤其是在太空极端环境下的行为)对于充分利用项目预算、最大程度降低人员伤亡风险以及推动未来几代人的进步必不可少。正确设计和控制这些过程和系统需要准确了解系统参数和材料热物理特性,以便进行模拟并最终设计和开发实际系统。对热物理和化学特性的理解被纳入过程算法中,从而实现操作优化,并最大程度减少为太空栖息地开发的宝贵能源的重复使用。这种理解的基础在于准确确定热物理特性。关键的热物理特性是与流体过程有关的特性,例如密度、粘度、表面张力和弹性。其他重要的热物理特性包括热导率和质量传递特性,例如扩散系数。
摘要 许多增材制造 (AM) 技术依赖于粉末原料,粉末原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,通过额外的机械和热界面通量来整合快速蒸发的影响。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在由于相变和耦合的微流体-粉末动力学而动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
与较大尺寸的形式相比,纳米材料具有出色的光学、电学和/或机械特性。它们在颜色、导电性、反应性、表面积与体积的比值和表面张力方面可能与宏观形式不同。正因为如此,纳米材料因其在疫苗生产、药物和药物输送方面的潜在应用而引起了科学家的兴趣 [3]。纳米载体是一种胶体药物输送装置,通常具有 500 纳米大小的亚微米颗粒。在过去的几十年里,人们对纳米载体进行了大量研究,因为它们在药物输送方面显示出巨大的前景。 [4] 由于纳米载体具有高表面积与体积的比值,它们可以改变药物的基本特性和生物活性。纳米载体可以融入药物输送系统的一些特性包括增强药代动力学和生物分布、降低毒性、提高溶解度和稳定性、控制释放和治疗剂的位点特异性输送 [5,6]。纳米技术最近已成为突破传统药物递送技术局限性的有用工具。为了改善药代动力学和生物分布特征、降低毒性、控制释放、增强溶解度和稳定性以及在特定位置递送有效载荷,纳米载体可以改变其封装部分的根本特性和生物活性 [7,8]。通过改变其组成、形状、大小和表面质量,纳米载体还可以表现出各种各样的物理化学性质 [9,10]。有机和无机系统均可用作纳米载体。无机纳米载体包括介孔二氧化硅纳米粒子 (MSN) 和金属纳米粒子,而有机纳米载体包括脂质体、脂质纳米粒子、聚合物纳米粒子、树枝状聚合物、胶束和病毒样颗粒 (VLP) [11]。
由于其独特的化学特性,各种PFA可以降低表面张力(充当表面活性剂),是依赖油(含油含量),并且是依赖水(疏水性)。然而,许多具有某些官能团的PFA也相对溶解。它们已在全球许多行业中广泛用于多种应用。pfas是在1930年代后期首次发明的,在1940年代商业开发,并开始在1950年代的消费产品中更广泛地用作不粘涂料。由于其独特的化学特性,PFAS的产生增加了,因为这些化学物质被纳入墨水,清漆,蜡,消防泡沫,金属电镀,清洁溶液,涂料配方,润滑剂,水和油的润滑剂,剥离剂,纸张,纸张和纺织品(Paul等人。2009)。 使用PFA的行业的示例包括汽车,航空,航空航天和防御,生物剂,电缆和电线,建筑,电子,能源,能源,消防,食物加工,食品加工,家用产品,石油和采矿,金属电镀,金属电镀,医疗材料,纸张和纸板,半导体,半导体,半导体,纺织品,皮革商品,皮革产品,皮革和服装(OECD 2013,OEEP 2013,UNEP 2013,UNEP 2013)。 这些材料中PFA的存在是环境问题的潜在来源。2009)。使用PFA的行业的示例包括汽车,航空,航空航天和防御,生物剂,电缆和电线,建筑,电子,能源,能源,消防,食物加工,食品加工,家用产品,石油和采矿,金属电镀,金属电镀,医疗材料,纸张和纸板,半导体,半导体,半导体,纺织品,皮革商品,皮革产品,皮革和服装(OECD 2013,OEEP 2013,UNEP 2013,UNEP 2013)。这些材料中PFA的存在是环境问题的潜在来源。
摘要 许多增材制造 (AM) 技术依赖于粉末原料,粉末原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,通过额外的机械和热界面通量来整合快速蒸发的影响。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在由于相变和耦合的微流体-粉末动力学而动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
许多增材制造 (AM) 技术都依赖于粉末原料,这些原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流动和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,快速蒸发的影响通过额外的机械和热界面通量来整合。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
肺表面活性物质通过降低肺泡内壁液体的表面张力,对预防肺不张至关重要。虽然呼吸窘迫综合征 (RDS) 在早产儿中很常见,但足月和晚期早产儿的严重 RDS 表明存在潜在的遗传病因。编码肺表面活性物质关键成分的基因中的致病变异,包括表面活性物质蛋白 B (SP-B、SFTPB 基因)、表面活性物质蛋白 C (SP-C、SFTPC 基因) 和 ATP 结合盒转运蛋白 A3 (ABCA3、ABCA3 基因),会导致严重的新生儿 RDS 或儿童间质性肺病 (chILD)。这些蛋白质在肺表面活性物质的生物合成中起着至关重要的作用,并在肺泡上皮 II 型细胞 (AEC2)(肺泡上皮的祖细胞)中表达。SP-B 缺乏症最常见于患有严重 RDS 的新生儿期,需要肺移植才能存活。 SFTPC 突变以常染色体显性方式起作用,并且比新生儿 RDS 更常见于儿童肺病或特发性肺纤维化。ABCA3 缺乏症通常表现为新生儿 RDS 或儿童肺病。基因疗法是治疗单基因肺病的一种有前途的选择。在开发用于治疗表面活性剂功能障碍遗传性疾病的基因疗法方面取得的成功和面临的挑战包括病毒载体设计和靶细胞类型的趋向性。在本综述中,我们探索了腺相关病毒 (AAV)、慢病毒和腺病毒 (Ad) 载体作为运载载体。将基因添加和基因编辑策略与由 SFTPB、SFTPC 和 ABCA3 基因致病变异导致的肺部疾病的最佳设计治疗进行了比较。
但是,没有逻辑元素,此类系统的编码功能不足以编程任意算法。尽管在十年前的液滴的压力调节流中显示了单个逻辑操作,但事实证明,15,16,24的进一步整合被证明是困难的,抑制了具有非平凡功能的系统的创建。先进的内置控制仍然是微流体学的最重要,最开放的问题之一,从而阻碍了与实验室芯片概念一致的自主和便携式设备的开发。在这里,我们解决了这个问题,并提出了一个液滴逻辑平台,以构建具有多个内部状态的顺序逻辑单元。我们使用的水滴不弄湿通道壁,被油包围为潮湿通道壁的连续相(CP)。大于通道横截面大的液滴在壁之间挤压。这个特殊的环境将液滴的高度限制在毛细血管上主导重力的尺寸,从而使后者可忽略不计。因此,毛细血管最小化表面积,形成带有圆形末端的细长塞子液滴。25界面曲率引入了毛细管压力差P L,该毛细血管差p l跨界面维持,并由年轻 - 拉普拉斯方程描述,该液滴由宽度W和高度H的矩形通道限制为液滴,并且表面张力γ可以估计为P L =γ(2 H - 1-1-2 W - 1-2 W - 1)。在这里,我们假设液滴的末端的形状分别由Radii w /2和H /2的相对壁之间的圆圈开处方。26P L对管道的局部尺寸的依赖性意味着将液滴转移到更狭窄的区域会增加液滴内部的压力。因此,通道管腔的更改可用于为液滴建立毛细管井。
2单晶薄膜合成10 2.1底物上的薄膜生长。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.1空间有限生长-SLG。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.2空化引发了不对法的结晶-CTAC(97)。。。。。。。。。。。。。。。。12 2.1.3外延生长。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.1.4转换方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.2独立的薄膜。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.2.1表面张力控制的ITC(98)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.2.2来自散装晶体。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 2.3图案薄膜和晶体阵列。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 2.3.1构造的生长。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。13 2.2.2来自散装晶体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.3图案薄膜和晶体阵列。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.3.1构造的生长。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>14 2.3.22222外延生长。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 2.3.3打印。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16 2.4生长方法的摘要。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。17