非常需要设计纳米颗粒表面形状的局部变化。这是因为这些修饰阳离子可以改善生物相容性和细胞摄取。23在这里,我们描述了一种在含核碱酶的多聚膜膜外表面形成局部变形的方法。我们表明,在插入包含互补核酶的二嵌段共聚物时,类似触手的节点可以在聚合物的表面形成(图1b)。与蓄水池一样,膜变形和随之而来的淋巴结形成依赖于不同的膜成分之间的互补氢键。将核碱酶配对的可编程性纳入自组装合成聚合物24 - 28先前已被利用以控制纳米颗粒形态,29 - 35瓶刷组件36和颗粒表面化学,37,以及37层的聚合,38,39货物货物40 - 42-42-42-42-42-42-42和增强的水。43
粘附需要分子接触,并且天然粘合剂采用机械梯度来实现完整(共形)接触以最大程度地提高粘附力。直觉上,人们期望顶层的模量越高,粘附强度越低。然而,僵硬顶层的厚度与粘附之间的关系尚不清楚。在这项工作中,我们量化了在软聚聚二甲基硅氧烷(PDMS)弹性体的厚度变化厚度的刚性玻璃状聚(PMMA)层之间的粘附。我们发现,在加载循环中,仅需要≈90nm厚的PMMA层才能将宏观粘附降低至几乎为零。可以使用Persson和Tosatti开发的保形模型来解释双层的粘附下降,在该模型中,创建保形接触的弹性能量取决于双层的厚度和机械性能。更好地理解机械梯度对粘附的影响将对粘合剂,摩擦以及胶体和颗粒物理学产生影响。
抽象的角膜是注射药物的主要障碍,这导致局部眼部治疗的生物幻想低和效力不佳。在这项工作中,我们首先使用猪角膜上的纸巾选择角膜结合适体。顶部两个丰富的适体(Cornea-S1和Cornea-S2)可能与猪角膜结合,其K D值与人角膜上皮细胞(HCEC)分别为361和174 n。适体官能化的脂质体载有环孢菌素A(CSA)作为干眼疾病的治疗方法。由于多价结合,角膜-S1或角膜-S2官能化的脂质体分别降低至1.2和15.1 n。在HCEC中,角膜-S1或Cornea-S2在15分钟内增强了脂质体的摄取,并将保留率延长至24小时。适体CSA脂质体获得了相似的抗炎和紧密连接调节效应,CSA的CSA比免费药物少十倍。在兔干眼病模型中,与商业CSA眼滴相比,Cornea-S1 CSA脂质体在维持角膜完整性和撕裂破裂时间方面表现出等效性,同时使用较低的CSA剂量。从角膜 - 塞莱克斯获得的适体可以用作眼药递送的一般配体,这表明有希望治疗各种眼部疾病甚至其他疾病的途径。
柔性电子设备在可穿戴设备、植入式设备、机器人和显示器等许多未来技术中都有着广阔的应用前景。在各种机械柔性中,可拉伸性是一项重大挑战。一个特别艰巨的目标是实现一种高性能透明电极,这种电极既能承受拉伸,又能大规模生产,同时又能避免对设备密度产生额外的限制。在这项研究中,通过对 3D 波纹图案和平面表面的统计比较,证明了 3D 波纹图案表面使沉积的氧化铟锡电极的应变性能提高了三倍,其中氧化铟锡电极被拉伸至电气故障。此外,该平台减轻了残余薄膜应力,使基板的处理更加容易。这项研究证明了使用可扩展平台实现未来电子设备可拉伸性的可行性,该平台仅使用常规材料和制造步骤就结合了高性能透明电极材料。
iala已主动寻求建立质量的短期至中期前景。这将使我们的成员受益,并更好地准备他们为涉及越来越多的自动船只的未来做准备。为了确定弥撒的可能未来,伊拉(Iala在可预见的将来,我们将拥有一支混合的常规船只,其自动化程度不同,并结合越来越多的质量。当前在油轮,中型和大型客船类别中实施大规模技术的前景是谨慎的,对这些船舶类型的运营和安全挑战感到担忧。质量的增加时间各不相同,表明在很长时间内,海上行业中常规船和自动船的共存。由于技术,法律,政治和社会经济的限制,船员的船只面临更长的采用时间表。新建的船只具有20到25年的典型寿命,这表明那些进入服务的人将继续运行几十年。主要的造船厂表示,他们目前并不希望建造大型船员。还注意到,现有的常规船只不容易为无机操作进行翻新。但是,一个普遍的趋势涉及将船只配备自动化流程和决策支持系统,从而使部分自动化能够使海员加入船上,以便在需要时提供控制权。实现能够独立决策的自动大型船只的实现,预计将与广泛实施至少20年。虽然群众技术适合小型和专业的船只,例如近海调查和渡轮,但最初的部署可能仅限于特定的参与州,而不是用于所有国际航行。在旨在用于国际航行的较大船只中的质量短期采用不会预期。
摘要 关于碳纳米管-硅 MIS 异质结构的新研究表明,可利用器件绝缘层中厚度的不均匀性来增强其功能。在这项工作中,我们报告了一种器件的制造和特性,该器件由 n 型硅衬底上的单壁碳纳米管 (SWCNT) 薄膜组成,其中纳米管和硅之间的氮化物中间层已被刻蚀以获得不同的厚度。三种不同的氮化硅厚度允许在同一器件内部形成三个区域,每个区域都有不同的光电流和响应度行为。我们表明,通过选择特定的偏置,可以打开和关闭区域的光响应。这种特殊行为使该器件可用作具有电压相关活性表面的光电探测器。在不同偏置下对器件表面进行的扫描光响应成像突显了这种行为。
固态材料的表面特性通常决定其功能,尤其是对于纳米级效应变得重要的应用。相关表面及其性质在很大程度上是通过材料的合成或操作条件来确定的。这些条件决定了热力学驱动力和动力学速率,负责产生观察到的表面结构和形态。计算表面科学方法长期以来一直应用于将热化学条件与表面相稳定性联系起来,尤其是在异质催化和薄膜生长群落中。本综述在引入新兴数据驱动的方法之前对第一原理的方法进行了简要介绍,以计算表面相图。其余评论的重点是机器学习的应用,主要是以学识的间势的形式来研究复杂的表面。随着机器学习算法和训练它们的大型数据集在材料科学中变得越来越普遍,计算方法有望变得更加预测性和强大,以建模纳米级的无机表面的复杂性。简介
在食品加工环境中使用的材料上可以建立由背景微生物群和单核细胞增生李斯特菌组成的微生物多物种群落。这些微生物多物种群落中菌株的存在、丰度和多样性可能受到相互作用和对常规清洁和消毒 (C & D) 程序的抵抗力差异的影响。因此,本研究旨在表征在没有和存在多种背景微生物群 (n = 18) 的情况下,单核细胞增生李斯特菌菌株混合物 (n = 6) 在聚氯乙烯 (PVC) 和不锈钢 (SS) 上形成生物膜过程中的生长和多样性。从蘑菇加工环境中分离出单核细胞增生李斯特菌和背景微生物菌株,并在模拟蘑菇加工环境条件下进行实验,使用蘑菇提取物作为生长培养基,以环境温度 (20 ◦ C) 作为培养温度。在单一物种生物膜培养期间施用的单核细胞增生李斯特菌菌株在 PVC 和 SS 试样上均形成生物膜,并使用氯化碱性清洁剂和基于过氧乙酸和过氧化氢的消毒剂进行四轮 C & D 处理。每次 C & D 处理后,在总共 8 天的培养期内将试样重新培养两天,C & D 可有效去除 SS 上的生物膜(减少量为 4.5 log CFU/cm 2 或更少,导致每次 C & D 处理后计数都低于检测限 1.5 log CFU/cm 2 ),而对 PVC 上形成的生物膜进行 C & D 处理产生的减少量有限(减少量在 1.2 到 2.4 log CFU/cm 2 之间,分别相当于减少量 93.7 % 和 99.6 %)。在多物种生物膜培养过程中,将单核细胞增生李斯特菌菌株与微生物群一起培养,48 小时后,单核细胞增生李斯特菌在生物膜中形成,因此 SS 和 PVC 上的多物种生物膜中单核细胞增生李斯特菌菌株多样性较高。C & D 处理可从 SS 上的多物种生物膜群落中去除单核细胞增生李斯特菌(减少 3.5 log CFU/cm 2 或更少,导致每次 C & D 处理后计数低于 1.5 log CFU/cm 2 的检测限),在不同的 C & D 周期中,微生物群落物种的优势有所不同。然而,与单一物种生物膜相比,PVC 上多物种生物膜的 C & D 处理导致李斯特菌的减少量较低(介于 0.2 和 2.4 log CFU/cm 2 之间),随后李斯特菌重新生长,肠杆菌科和假单胞菌稳定占主导地位。此外,在没有和存在浮游背景微生物群培养物的情况下,李斯特菌的浮游培养物沉积在干燥表面上并干燥。与 PVC 相比,SS 上观察到的干燥细胞计数随时间的下降速度更快。然而,C & D 的应用导致两个表面上的计数低于 1.7 log CFU/coupon 的检测限(减少 5.9 log CFU/coupon 或更少)。这项研究表明,在 C & D 处理后,单核细胞增生李斯特菌能够在 PVC 上形成单一和多种生物膜,并且菌株多样性高。这突出表明需要对 PVC 和类似表面应用更严格的 C & D 制度处理,以有效去除食品加工表面的生物膜细胞。
从食品行业的固体表面中恢复微生物是确保食品安全和质量的关键步骤。各种技术,例如擦拭,接触板,海绵采样和冲洗/浸入,都取决于感兴趣的表面类型和微生物物种,提供了明显的优势。考虑表面特征和所选技术的验证对于准确的微生物评估至关重要。此外,使用选择性培养基,超声和富集培养物等增强功能可以进一步提高恢复功效。通过采用适当的恢复技术,食品行业可以采取有针对性的卫生措施,最终降低了粮食源性疾病的风险并提高了整体消费者的安全。