1 诺森比亚大学地理与环境科学系,英国泰恩河畔纽卡斯尔 2 英国气象局,埃克塞特,英国 3 爱丁堡大学地球科学系,英国爱丁堡 4 IGE,格勒诺布尔阿尔卑斯大学,法国格勒诺布尔5 魁北克大学三河分校环境科学系,三河市,魁北克省,加拿大 6 魁北克大学应用测绘学系舍布鲁克,加拿大舍布鲁克 7 加拿大环境与气候变化气候研究部,加拿大多伦多
摘要:表面钝化是防止表面氧化和改善纳米晶体量子点 (QD) 发射性能的关键方面。最近的研究表明,表面配体在确定基于 QD 的发光二极管 (QD-LED) 的性能方面起着关键作用。本文研究了 InP/ZnSe/ZnS QD 的封端配体影响 QD-LED 亮度和寿命的潜在机制。电化学结果表明,高发光 InP/ZnSe/ZnS QD 表现出取决于表面配体链长度的调制电荷注入:配体上的短烷基链有利于电荷向 QD 传输。此外,光谱和 XRD 分析之间的相关性表明,配体链的长度可调节配体-配体耦合强度,从而控制 QD 间能量传递动力学。本研究的结果为表面配体在 InP/ZnSe/ZnS QD-LED 应用中的关键作用提供了新的见解。
德国神经病学系的莱比锡大学医学中心,B Max Planck人类认知与脑科学研究所,神经病学系,莱比锡,德国莱比锡认知神经病学诊所,莱比锡大学医院,莱比锡,德国莱比锡,德国D Banner Alzheimer的Alzheimer Institutes Phoenix, AZ, USA g School of Mathematics and Statistics (KC), Neurodegenerative Disease Research Center (EMR), Arizona State University, USA h Department of Neurology, College of Medicine – Phoenix (KC), Department of Psychiatry (EMR), University of Arizona, USA e Neurogenomics Division, Translational Genomics Research Institute, University of Arizona, and Arizona State University, Phoenix,美国亚利桑那州立大学I横幅 - 阿里佐纳州立大学神经退行性疾病研究中心,生物设计学院,亚利桑那州立大学,大学,亚利桑那州,美国亚利桑那州坦佩市J.
建筑物和古迹通常是由微生物殖民的,这些微生物可能导致色彩变化以及美学和物理化学的损害。这种生物殖民化取决于材料和环境。为了更好地理解和将建筑物表面的微生物发育与气象参数相关联,已经使用在两个时期的巴黎地区私人居住区的壁上的原位仪器来测量绿色藻类和蓝细菌的浓度:春季和秋季冬季。还选择了不同的位置来评估位置(地平线或垂直)和情况(阴影与阳光微气候)的影响。结果表明,微生物的发展迅速响应降雨事件,但随着温度较低,相对湿度(RH)较高,冬季的反应更加强烈。蓝细菌对这种季节作用不太敏感,因为它们比绿藻更耐药性。基于所有数据,已经制定了不同的剂量反应函数,以将RH,雨水和温度与绿藻浓度相关联。通过特定的拟合参数来考虑微气候的影响。这种方法必须扩展到新的广告系列测量结果,但对于预测气候变化的影响可能非常有用。
预防微生物感染是一项全球性挑战。有效的抗菌涂层可在接触后迅速杀死微生物,有助于最大限度地减少微生物的传播。然而,它们的可扩展合成具有挑战性。这项工作展示了自消毒纳米薄膜的可扩展合成和表征,用于医院相关表面的后期改造。它们的抗菌作用基于超带电阳离子表面膜和带负电的细菌膜之间的电荷相互作用。在棉布(防护服)、丁腈橡胶(防护手套)和玻璃表面(桌子、屏幕)上,使用光引发本体聚合风干的 [2-(甲基丙烯酰氧基) 乙基] 三甲基氯化铵薄膜来增强其带电性,并通过流动电位测量进行研究。通过光谱成像椭圆偏振法和 X 射线光电子能谱法的组合,可以看到以阳离子季胺基团为主的 6 纳米厚涂层。涂层表面的抗菌体外评估表明,在不到 5 分钟的时间内,细菌数量减少了约 4 个对数。共聚焦激光扫描显微镜和活死染色证实了表面诱导的细菌杀灭作用。该涂层的一系列兼容材料及其快速杀菌活性可以对抗细菌的表面传播,并可能有助于遏制传染病的传播。它在环境条件下的合成有望融入工业流程。
科学技术学院的卡梅利诺大学,通过麦当娜·德尔·普里索(Madonna Delle Priso)9,62032卡梅利诺(Camerino),MC,意大利。e-mail: roberto.gunnella@unicam.it B Department of Physical and Chemical Sciences (DSFC), University of L'Aquila Studies, Via Vetoio 10, 67100 L'Aquila, Italy C Institute of Structure of the Matter-Cnr (ISM-CNR), S.S. 14, km 163.5, 34149 Trieste, Italy d faculty of applied physics and数学和高级材料中心,Gdansk技术大学,UL。narutowicza 11/12,80-233 GDANSK,波兰,波兰和物理系科学技术部拉合尔大学拉合尔大学,巴基斯坦Jauharabad校园,巴基斯坦F CN-Spin us l'aquila,Via Vetoio 10,67100 l'aquila via vetoio l'aquila,意大利vetoio 10,67100 l'aquila,意大利g iffn-ifnyaly g infn-g infn-sez。Perugia,通过意大利Pascoli Perugia†电子补充信息(ESI)。参见doi:https://doi.org/ 10.1039/d2cp04586a
激光吸收是激光材料加工的基本作用之一。吸收值与计算过程效率相关,并预测对日益使用的激光剂的材料对材料的影响。但是,吸收测量可能是一项复杂的任务。在金属的高温下,由于动态表面和温度测量所需的通常未知的发射率,仅可用有限的实验数据。模型是为了预测不同温度下的吸收,这些温度在某些制度中取得了成功,但通常在其他方面失败。为了改善理论模型,需要对高温金属表面进行实验测量。因此,在这项工作中,使用加热激光器提出了一种辐射测量方法,以创建金属熔体池,同时通过第二个测量激光束测量温度和表面反射。从文献中知道的一般趋势可以通过测量值确认,而吸收值倾向于在升高温度下散射。但是,可以观察到趋势。在熔化和沸腾温度之间,在35%至38%的范围内看到了略有吸收的增加。这些值表明必须考虑频带间和内标的吸收来解释该制度中的吸收。在升高的温度下,内预预知是主要的吸收机制,在非常高的温度下达到超过45%的吸收值。
摘要:光学模拟计算相较于传统数字计算具有并行计算、速度快、能耗低的天然优势。目前,片上光学模拟计算领域的研究主要集中在经典数学运算上,尽管量子计算具有诸多优势,但基于超表面的片上量子模拟器件尚未被展示。本文基于绝缘体上硅(SOI)平台,设计了一种特征尺寸为60×20 µm 2 的片上量子搜索器。利用经典波模拟基于叠加原理和干涉效应的量子搜索算法,同时结合片上超表面实现调制能力。当入射波聚焦在标记位置时,即可找到标记项,这与量子搜索算法的效率完全相同。所提出的片上量子搜索器有利于基于波的信号处理系统的小型化和集成化。
引言三角运算作为基本数学运算家族之一,在通信与信号处理领域占有核心地位[1]。传统的用于执行三角运算的器件,如现场可编程门阵列(FPGA)[2]和数字信号处理器(DSP)[3],通常基于电子元件,这导致速度低、功耗高,并且复杂性不可避免[4,5]。如今,呈指数级增长的通信数据和信息需要实时处理和存储,这对传统的基于电子的运算提出了严峻的挑战。因此,迫切需要一种颠覆性的数值三角运算解决方案。在过去的几年中,光学计算的出现为突破传统信号处理器的若干限制提供了可能性[6]。这种基于电磁波的计算策略避免了模数转换,允许超高速大规模并行运算[7],这已被证明在时间积分和微分[8,9]、希尔伯特变换[10]、空间微分器[11]、逻辑门[12]和任意波形生成[13]中具有巨大潜力。
摘要 电热超表面因能够动态控制热红外辐射而受到广泛关注。虽然以前的研究主要集中在具有无限单元格的超表面,但有限尺寸效应是实际开发具有快速响应和广泛温度均匀性的热超表面的关键设计因素。在这里,我们研究了由有限阵列尺寸的金纳米棒组成的热超表面,其仅需几个周期就能实现接近无限情况的共振。更重要的是,由于阵列尺寸有限,占用空间如此之小,导致响应时间降至纳秒级。此外,发现垂直于纳米棒轴线方向上的单元格数量对共振和响应时间不敏感,从而提供了长宽比的可调谐性,可以将温度均匀性提高到亚开尔文水平。