摘要 — 探索红色星球对于人类殖民和在火星上建立栖息地都至关重要。由于太空任务成本高昂,人们研究使用分布式传感器网络来降低现场探索的成本。与此同时,具有超低功率接收器的设备(称为零能量 (ZE) 设备)可以为进一步探索火星环境铺平道路。本研究重点研究无线电力传输,以提供火星表面 ZE 设备所需的电力。本研究的主要动机是研究传统的收集器和通信单元是否能够为长距离提供所需的电力。数值结果表明,无需使用任何复杂的硬件就可以为 ZE 设备供电。此外,还研究了指向误差和沙尘暴对收集性能的影响。综合模拟结果表明,收集器的选择和设计应考虑传播信道和发射机特性。
MA Gorlach. et al. Nat. Commun., (2018)干法蚀刻是电介质超表面的必要部分!
C 0.0 a ±0 0.0 a ±0 2 ab ± 0 0.0 a ±0 0.0 a ±0 0.0 a ±0 D 0.0 a ±0 0.0 a ±0 4 abc ± 0 0.0 a ±0 0.0 a ±0 0.0 a ±0 E 11 e ±2 0.0 a ±0 2 ab ± 0 0.0 a ±0 0.0 a ±0 0.0 a ±0 F 0.0 a ±0 0.0 a ±0 3 ab ± 0 0.0 a ±0 0.0 a ±0 0.0 a ±0 G 0.0 a ±0 0.0 a ±0 53 g ± 5 0.0 a ±0 0.0 a ±0 0.0 a ±0 H 6.0 c ±1 0.0 a ±0 11 e ± 1 0.0 a ±0 0.0 a ±0 0.0 a ±0 I 0.0 a ±0 0.0 a ±0 8 cde ±2 0.0 a ±0 0.0 a ±0 0.0 a ±0 J 260 ± 20 0.0 a ±0 2 ab ± 0 100 c ± 10 0.0 a ±0 0.0 a ±0 K 0.0 a ±0 0.0 a ±0 4 abc ± 1 0.0 a ±0 0.0 a ±0 0.0 a ±0 L 2.0 b ± 0 0.0 a ±0 9 de ± 2 0.0 a ±0 0.0 a ±0 0.0 a ±0 M 0.0 a ±0 0.0 a ±0 75 i ± 5 0.0 a ±0 0.0 a ±0 0.0 a ±0 N 0.0 a ±0 0.0 a ±0 9 de ± 2 0.0 a ±0 0.0 a ±0 0.0 a ±0 O 0.0 a ±0 0.0 a ±0 46 f ± 4 0.0 a ±0 0.0 a ±0 0.0 a ±0 p 0.0 a±0 0.0 a±0 3 ab±0 0.0 a±0 0.0 a±0 0.0 a±0 q 0.0 q 0.0 a±0 0.0 a±0 0 0.0 a±0 3 ab±0 0.0 a±0 0.0 a±0 0.0 a±0 0.0 a±0 a±0
•Jennifer Edmunson博士-MSFC PM MMPACT•Frank Ledbetter博士 - 太空制造业中的中小企业(ISM)和MMPACT•Mike Fiske•Mike Fiske - Jacobs/MSFC元素LEAD MMPACT/OLYMPUS/OLYMPUS•MIKE EFFINGER•MIKE EFFINGER - MSFC Electer -MSCCATS MSCCATS•MSFOTART -TRACICAT•MSFOTICY -JOHN TRACICAT•JOHN TRACICAT•JOHN TRACICAT•JOHN TRACICAT•MSFCICT•JOHN TRACICAT• (PT)高级制造•Mark Hilburger博士 - PT发掘,施工和装备•Jason Ballard - 首席执行官Icon Technologies•Evan Jensen - Evan Jensen - Icon PM MMPACT•搜索+ -Icon/MMPACT LUNAR LUNAR LUNAR建筑设计概念•Bjarke Ingels Group -iCon/mmpact lunar架构概念•彼得·柯林斯(Peter Collins) - 宾夕法尼亚州立水泥和地球聚合物
由于其电子特性、易于制造和化学稳定性,金 (Au) 是等离子体应用中最广泛使用的造币金属。它的介电函数 ε (λ)(其中 λ 是光的波长)在可见光谱的长波长范围内产生等离子体共振。其他金属,如铝 (Al) 和银 (Ag),在较短波长范围内具有等离子体共振,但对于纳米技术来说更难。[12] 虽然 ε (λ) 的实部决定发生等离子体共振的波长,但其虚部控制等离子体共振强度。[13] 十年来,对金、银和铝替代材料的研究激增,以利用整个可见光和近红外光谱的等离子体共振。[14–16]
超表面应用数量的不断增长以及其制造和特性的快速发展[30]促使人们开发出精确分析和设计超表面的方法。虽然全波数值解始终是一种选择,但分析工具可能更具吸引力,因为它们有助于设计并提供有关超表面底层物理的宝贵见解。对于每个单位晶胞由单个散射体组成的周期性超表面,即我们在此重点讨论的超表面类型(图1),有几种用于此目的的技术。首先,开发了可理解的超表面和超材料电路模型[31–33],这些模型易于在工业中使用,尤其是对于微波应用。第二种方法遵循均质化原理。它旨在用具有相同表面磁化率的表面替换有问题的超表面。[34–36]尽管这些方法对组件设计非常有帮助,但它们不足以描述所研究结构的内部物理特性,例如组成粒子的相互作用。此外,电路建模和均质化方法有时会涉及一些假设,这些假设会以牺牲准确性为代价来简化所研究的问题。第三种方法更多地来自“第一性原理”,旨在通过求和其组成粒子的响应,自下而上地构建二维阵列的响应。虽然这种自下而上的方法与最初提到的两种方法有一些共同之处,但它更通用、更灵活。它使大量设计更容易处理,包括毫米波和光学应用。[7,37–44] 在这种方法中,最好使用场的多极展开来讨论组成粒子的光学作用。[45–51] 在多极展开中,散射体的光学响应用一系列由外部照明和形成超表面的所有其他粒子的散射场引起的多极矩来表示。使用不断增加的
1 中国科学院微电子研究所微电子仪器与设备研发中心,北京市北土城西路 3 号,100029,中国;yuesong@ime.ac.cn(SY);zhangzhe1@ime.ac.cn(ZZ);zhangkunpeng@ime.ac.cn(KZ);guohuifang@ime.ac.cn(HG);wangran@ime.ac.cn(RW);doutonghui@ime.ac.cn(TD)2 中国科学院大学微电子学院,北京市玉泉路甲 19 号,100049,中国 3 北京信息科技大学光电测试技术与仪器教育部重点实验室,北京市小营东路 12 号,100192,中国;zdl_photonics@bistu.edu.cn(DZ); zhulianqing@sina.com (LZ) 4 东南大学电子科学与工程系,南京四牌楼 2 号 210018,中国 * 通信地址:h.yang@seu.edu.cn (HY); zz241@ime.ac.cn (ZZ) † 这些作者对本文的贡献相同。
摘要Prime Editor(PES)是定期间隔的短篇小说重复序列(CRISPR)基于基于基于)的基因组工程工具,可以引入精确的基本配置编辑。我们开发了一条自动管道,以纠正(治疗性编辑)或引入(疾病建模)人类的致病变异,该变异能够阐明主要编辑所需的几种RNA构建体的设计,并避免了人类基因组中预测的非目标。但是,使用最佳的PE设计标准,我们发现只有一小部分这些致病性变体才能得到焦油。通过使用替代CAS9酶和扩展模板,我们将可靶向的病原变体的数量从32,000增加到56,000个变体,并使这些预先设计的PE构建体可通过基于Web的门户(http://primeedit.nygenome.org)访问。鉴于具有治疗基因编辑的巨大潜力,我们还评估了开发通用PE构建体的可能性,发现常见遗传变异仅影响少数少数设计的PE。
信息和通信技术在近几十年来的发展使得这种技术成为可能。今天我们可能面临着类似的情况,微电子技术即将用于生物系统,但半导体与生物环境之间的信号交换仍然受富含缺陷的界面的影响。半导体技术的快速发展也体现在新型微型生物传感器 [1–3] 上,微技术与纳米技术大大提高了生物传感器的灵敏度和性能。纳米生物传感器因较高的表面积与体积比 [4] 而受益于高效的转导机制,并且由于较低的分数维数,理论上分析物扩散速度更快。 [5] 此外,生物相容性、标准化制造工艺和广泛可用的生物功能化协议使纳米硅在许多方面成为生化传感的理想基材。由于硅器件的小型化,表面特性和表面功能化变得越来越重要,通过它们可以调整半导体器件的特性。对各种硅基底(如晶体硅、多孔硅或具有明确有机膜的纳米线)进行化学功能化,可能会显著改变其表面润湿性,[6] 可能会产生掺杂效应,[7] 并允许将分子线集成到传统半导体技术中。[8] 虽然微型硅基底的功能化提供了许多机会来根据您的需求调整其特性,但将生物分子固定在纳米级结构上有时可能具有挑战性。 这可能是由于生物分子在多孔基底的纳米孔中的扩散有限,或者在具有纳米级曲率的表面上不太容易形成明确界定的分子层。 [9]
摘要 铂被广泛用作混合硫 (HyS) 循环中氢气生产的首选催化剂。在此循环中,水 (H 2 O) 和二氧化硫 (SO 2 ) 反应生成硫酸和氢气。然而,铂对 H 2 O 和 SO 2 的表面反应性尚未完全了解,尤其是考虑到表面上可能发生的竞争吸附。在本研究中,我们进行了密度泛函理论计算和长程色散校正 [DFT-D3-(BJ)],以研究 H 2 O 和 SO 2 对 Pt (001)、(011) 和 (111) 表面的竞争效应。比较单个H 2 O分子在不同Pt表面的吸附情况,发现H 2 O在(001)表面的解离吸附能最低(E ads = –1.758 eV),其次是(011)表面(E ads = –0.699 eV)和(111)表面(E ads = –0.464 eV)。对于SO 2 分子的吸附,趋势类似,在(001)表面的吸附能最低(E ads = –2.471 eV),其次是(011)表面(E ads = –2.390 eV)和(111)表面(E ads = –1.852 eV)。因此,在H 2 O和SO 2 竞争吸附时,SO 2 分子会优先吸附到Pt表面。如果SO 2 浓度增加,两个相邻的SO 2 分子之间可能会发生自反应,导致表面形成一氧化硫(SO)和三氧化硫(SO 3 ),这可能导致Pt催化表面硫中毒。