地球观测越来越多地用于绘制和监测地球表面发生的过程。如今,卫星获取的数据使我们能够对森林、海洋和不断发展的城市地区的状况有一个全球性的、时间一致的了解。然而,如果没有适当的处理链将像素值转换为对决策者有用的信息,如此丰富的数据就没有什么价值。最近,机器学习取得了快速发展——尤其是由于深度学习方法的兴起——并且越来越多地应用于地球观测图像处理系统。计算机视觉和自然语言处理中不断增长的模型激发了遥感技术的发展,并且该领域不断提出新的方法。然而,尽管它们取得了令人印象深刻的成果,但方法和解决方案的数量不断增加使得全面概述和了解该领域最有前途的方法变得复杂。在本文中,我们旨在填补这一知识空白,并建议回顾蓬勃发展的生态系统,重点是开发用于地球观测的人工智能模型、其最新趋势,并勾勒出未来发展的潜在途径。
本文旨在分析两种可能的系留卫星系统架构的性能,这些系统用作分布式雷达探测仪的平台。第一种架构是横向轨道定向的系留卫星系统,利用与低地球轨道稀薄大气相互作用产生的空气动力进行控制和稳定。第二种架构涉及通过陀螺稳定控制的系留卫星系统,通过使系统围绕轨道平面内的轴旋转来实现。在简要介绍雷达探测技术之后,介绍了描述系统几何形状及其特性的方法,然后将这两种架构的性能相互比较并与当前最先进的技术进行比较。通过分析建模的标称行为,结果表明,这两种提出的架构可以在一个轨道内分别以最大横向轨道分辨率实现连续或多次观测,从而最大限度地减少杂波噪声。与通常每条轨道只能实现最多四次观测的编队飞行架构相比,这是一种显著的性能改进。最后研究了每种架构的优缺点,并讨论了其可能的任务场景。
准确稳定的航天器指向是许多天文观测的要求。特别挑战纳米卫星,因为表面积不利 - 质量比和甚至最小的态度控制系统所需的量。这项工作探讨了无执行器精度或执行器引起的干扰(例如抖动)不受限制的机构中对天体物理态度知识和控制的局限性。对原型6U立方体上的外部干扰进行了建模,并根据可用体积内的望远镜的可用恒星量和掌握限制感测知识计算。使用模型预测的控制方案集成了这些输入。对于1 Hz的简单测试用例,具有85毫米望远镜和单个11级恒星,可实现的身体指向预计为0.39弧秒。对于更一般的限制,可以整合可用的星光,可实现的态度感应大约为1毫米秒,这导致了应用控制模型后的20 milliarcseconds的预测身体指向精度。这些结果表明,在达到天体物理和环境限制之前,态度传感和控制系统的重大空间。
空间仪器是空间活动实用性和益处的核心。来自空间仪器的数据(包括观测、信号)可用于科学、社会和经济等许多领域的各种应用。这样的例子比比皆是,包括地球气候变化、天文学、宇宙学、行星研究、社会安全、环境、生物多样性、可持续发展目标等等。荷兰在空间仪器开发方面有着悠久的传统,特别是在光学领域,但微波/无线电领域也即将出现。荷兰在高能和低能天体物理学以及大气成分领域的仪器在国际空间研究中占据领先地位。荷兰空间生态系统,包括科学研究所和工业,包括这些领域最先进的研究和开发。这些组织在国家和国际联盟中有着悠久的合作历史。当前太空的发展表明,科学和社会越来越依赖太空仪器。《新太空》显示,航天器越来越小、越来越便宜,因此仪器也越来越小,同时太空的利用也越来越可持续。与此同时,实现新型观测的突破性技术往往需要更大的预算,并可能导致更复杂的太空项目,尤其是在科学领域。
正是在这种背景下,IN-SPACe 发布的印度《印度太空经济十年愿景与战略》报告预测,2033 年对地观测的市场潜力将达到 80 亿美元,增长率为 28%。1 印度严重依赖对地观测数据来满足各种关键需求,包括天气监测、气候变化监测、农业部门应用、城市规划、交通、基础设施以及最重要的国家安全。建立主权能力以确保能够获得对地观测数据对于印度的国家利益至关重要。这包括增强气候监测、灾害管理、农业规划和国防行动的能力。除此之外,基础设施、能源和采矿、金融和保险等其他各个行业都可以从基于对地观测数据的应用中受益匪浅。在未来十年内,在国家内部发展专业知识以满足这些需求至关重要。在这方面,本思想领导力详细介绍了基于 EO 的应用的关键价值主张。它还深入探讨了 EO 平台如何支持数据的获取、处理和分析。建立这样的平台将实现下游能力,同时也支持印度的主权需求,加强国际关系,并促进社会经济发展。
本报告详细介绍了可用于野火观测的轨道和亚轨道(机载)成像/传感系统资产。成像资产是各种机构和国际组织运营的研究或操作系统,包括 NASA、NOAA、ESA、JAXA、DLR 等。随附的表格和系统描述用于支持跨机构北极研究和政策委员会 (IARPC)、野火实施小组 (WIT)。WIT 是一个多机构小组委员会,负责调查北极野火发生的频率和严重程度,作为了解高纬度陆地生态系统过程、生态系统服务和气候反馈的一部分。野火计划在 IARPC 北极研究计划草案:2013-2017 财年第 3.2 节:研究计划中确定。本报告还响应了联邦政府资助的北极地区研究的五年计划,其中 IARPC 确定了七个总体类别,作为北极研究国家政策的基础,并将特别受益于机构间合作;其中一个类别是“观测系统”类别。本报告支持该有益需求评估。作为 IARPC WIT 的一部分,里程碑 3.2.4e 中确定了向北极研究界通报北极野火影响的关键要素:
沿海泻湖和河口区域的动态特点是生物和物理过程之间的微妙平衡,理解和监测此类过程需要在广泛的时间和空间尺度上进行观测。在此背景下,遥感技术非常有利,可以克服传统现场点观测的空间限制,为更好地了解相关生物地貌过程以及校准和验证空间分布的水动力和传输模型提供新的机会。但是,浅水区悬浮颗粒物 (SPM) 浓度的遥感必须克服与以下方面相关的困难:i) 底部反射的影响,这可能会干扰准确检索;ii) 准确了解悬浮物光学特性的必要性,以及 iii) 对与所产生的估计值相关的不确定性进行评估的重要性。本研究提出了一种使用简化的辐射传输模型来估计泻湖/河口水域中 SPM 浓度的方法。我们使用基于交叉验证和引导技术的校准/验证方法来提供模型参数的统计合理确定,并评估由不准确的确定以及对底部沉积物反射率的不确定知识引起的不确定性。
人工智能 (AI) 系统为可持续发展和可持续发展监测提供了新的机遇。应用包括用于地球观测的遥感、用于增强数据和信息可访问性的生成式人工智能以及用于挖掘非结构化数据源的机器学习等。然而,人工智能存在缺陷,包括连接需求、输出偏差的可能性以及对环境的影响。毫不奇怪,人工智能和官方统计数据一起成为数据和统计领域的讨论话题,包括联合国欧洲经济委员会统计现代化高级工作组、联合国大数据中心等各类实体都从不同角度着手构建和利用其发展能力。在这个领域,有两种方式可以讨论人工智能。第一种也是最成熟的方法是将人工智能用于数据(例如机器学习)。第二种方法也是较少尝试的,即人工智能的数据方法,它提出了一些有趣的新问题,即如何训练人工智能模型以及使用什么样的数据。本次会议将基于现有用例和共享经验,通过深入讨论三个主题,反思需要做些什么才能释放人工智能的力量,实现可持续发展:
摘要 卫星图像与地形/表面地图相结合用于识别和描述科威特沙漠表面的变化,这些变化是由 1991 年海湾战争期间和之后的军事活动造成的。这些变化导致了地表沉积物和形态特征的改变,从而导致了环境恶化。地理信息系统 (GIS) 用于整合和分析来自卫星图像、地图和实地观测的多源和多尺度数据。GI 用于识别、描述和描述地形格局的变化、地表变化的性质和程度及其对环境的潜在影响。战后卫星图像与战前实地地图相关联,可以识别地表沉积物类型和地貌单元的变化,重点关注显示地表动力学变化的区域。根据地表沙土范围的变化 [战后沙土侵入] 和石油污染的影响(薄凝灰岩层的形成)对这些区域进行识别和分类。 GIS 分析显示,科威特 21.6% 的面积受到海湾战争的影响,其中 4.4% 是由于石油污染,17.2% 是由于重新动员的沙床。这些结果表明,需要重新分类科威特的地貌特征,以考虑这些与战争相关的表面变化。
• 对 EML-1 隐藏区域中的物体进行天体动力学、覆盖范围和辐射测量 • 逐步部署多个站组成的网络,首先在南极站具备初始作战能力 (IOC),并具有持续太阳照射和地球 LOS 进行通信 • 使用月球勘测轨道器 (LRO) VIS、IR 和 LIDAR 地图进行选址 • 源自 Ball CT-2020 星跟踪器的宽视场 (WFOV) 摄像机 • 指向天顶的相关鱼眼摄像机以检测附近和快速移动的物体 • Ball 防尘和干式润滑技术可保护光学器件、太阳能电池板和运动部件 • 我们在 L-CiRIS 热成像摄像机中学到的月球独特的热工程经验将于 2023 年交付到月球南极 • 由 NASA 预先批准的供应商作为商业产品进行月球表面交付 • 将带电粒子、射频和其他有效载荷与摄像机组合在一起的仪器套件,共同完成任务 • 额外科学:悬浮月球尘埃、探路者用于天文观测的大型电光或红外(EOIR)月球观测站