近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管这种解决方案具有众多优点,但在操作使用方面却受到严重限制,特别是几乎不可能实现免眼交互,而且在湍流条件下使用触摸屏极其复杂。我们研究了物理特性对克服这些弱点的贡献,方法是引入一种形状可变的触摸屏,该触摸屏具有可供用户手部休息的褶皱。在模拟器中,我们已经在各种湍流和脑力负荷的驾驶条件下评估了该表面。结果表明,褶皱通过稳定手臂和手部,有助于减少体力消耗。这种物理特性还与更好的驾驶任务表现以及对飞机系统状态的更好态势感知有关,这肯定是因为褶皱提供的形状具有更好的视觉特性(显著性),使得监控它们在注意力资源方面成本更低。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管这种解决方案具有众多优点,但在操作使用方面却受到严重限制,特别是几乎不可能实现免眼交互,而且在湍流条件下使用触摸屏极其复杂。我们研究了物理特性对克服这些弱点的贡献,方法是引入一种形状可变的触摸屏,该触摸屏具有可供用户手部休息的褶皱。在模拟器中,我们已经在各种湍流和脑力负荷的驾驶条件下评估了该表面。结果表明,褶皱通过稳定手臂和手部,有助于减少体力消耗。这种物理特性还与更好的驾驶任务表现以及对飞机系统状态的更好态势感知有关,这肯定是因为褶皱提供的形状具有更好的视觉特性(显著性),使得监控它们在注意力资源方面成本更低。
1956 年的达特茅斯会议上,“人工智能” (AI) 首次被正式提出作为一个通用术语,并被定义为技术在最少的人为干预下模拟智能行为的能力。目前,人工智能被广泛应用于许多领域,包括医疗领域和医疗保健系统 (1-3)。由于皮肤病学是一门使用大量临床图像的医学专业,并且可观察图像特征的视觉特性是重点,因此它似乎是一个非常适合整合人工智能训练的领域。事实上,初步研究已经得出结论,人工智能在皮肤病学中的应用具有潜在的优势,能够潜在地自动执行重复性任务、优化耗时任务、扩大有限医疗资源的获取途径、改善观察者间可靠性问题以及扩展皮肤科医生的诊断工具箱 (4)。迄今为止,已经进行了许多著名且有意义的人工智能研究,这些研究集中于皮肤病的识别和分类,包括皮肤癌(5-13)、特应性皮炎(14)、牛皮癣(15,16)和甲真菌病(17)。
对象识别是人类将视觉世界组织成有意义的感知单元的过程。要了解人类的这种能力,重要的是要检查其起源在婴儿期及其成熟的过程。在这篇综述中,我们通过综合发展心理学,认知神经科学和计算建模的研究来研究对象识别的发展。我们描述了第一年,婴儿如何展示成人视觉能力的早期痕迹,从不变对象识别到几类学习。这些能力的快速发展得到了婴儿特异性的生物学和经验约束的支持,例如低视敏度和对对称性等特性的先天偏见。此外,婴儿对物体的经验是“自我策划的”,因此他们选择了最能支持学习的对象观点。的确,将类似婴儿的约束结合到计算模型中可以提高其在许多识别任务上的表现。支持婴儿期这些能力的神经机制可能与成年后的神经机制不同:而腹侧视觉途径对于成年人的对象识别至关重要,而婴儿的对象识别可能主要由低级视觉特性支持,并且潜在的是背途径表示。一起,这些研究强调了儿童特定发育生态位在塑造早期对象识别能力及其神经基础方面的重要性。
在自由探索现实世界场景期间的眼动运动的时间课程分析通常会显示固定持续时间的增加以及扫视幅度的减少,这已经在两种视觉系统方法中进行了解释,即从环境到焦点的过渡。在早期观看期间的简短固定和较长的扫视被归类为环境视力模式,这与空间取向有关,并且与简单的视觉特性(例如运动,对比度和位置)有关。在以后的观看期间,更长的固定和较短的扫视被归类为焦点视力模式,它集中在凹起的投影中,并且能够对象识别及其语义分类。尽管这些发现主要是在图像探索的背景下获得的,但本研究努力研究当人们从事复杂的现实世界任务时,是否会在环境和局灶性视觉之间的相互作用模式中部署相同的相互作用模式 - 以及何时?基于对现有数据的重新分析,该数据集成了并发大声思考和眼睛跟踪协议,本研究将参与者的内部思维模型与他们的眼睛运动的参数相关联,他们将解决方案计划用于现实世界中的开放式设计问题。我们假设在求解器遇到难以将其概念方向转移以调整解决方案路径的困难时,在环境和焦点注意处理之间切换很有用。个人可能会更喜欢不同的注意策略来寻求信息的行为,例如环境对焦点或焦点。观察到的固定持续时间的增加和扫视幅度的减少在概念方向上的变化围绕时期的幅度下降,从而支持了对环境到焦点处理的假定;但是,焦点到焦点处理并不明显。此外,我们的数据表明,概念方向转变的开始是可以观察到的眼动行为,并有明显的固定延长。我们的发现加入了实验室环境中得出的结论,通过提供有关现实世界问题解决的环境和焦点处理特征的初步证据。