2025 年新内容 下面列出的统一福利变化适用于自 2025 年 1 月 1 日起生效的所有威斯康星州团体健康保险计划成员。 健康福利 • 最高自付费用减少额:(MOOP)所有非 HDHP 选项的 MOOP 都会从个人 9,450 美元/家庭 18,900 美元减少到个人 9,200 美元/家庭 18,400 美元。由于您的福利的综合性,任何成员都不太可能达到 MOOP。 • 视轴矫正训练:视轴矫正(眼部治疗)的终生限额从 2 次更改为不超过 12 次。 • HDHP 网络内免赔额(总计):由于最近联邦法规对健康储蓄账户 (HSA) 可用性的变化,HDHP 的网络内免赔额将从个人 1,600 美元/家庭 3,200 美元增加到个人 1,650 美元/家庭 3,300 美元。 • 营养咨询。承保范围证书语言明确,允许提供与体重管理相关的营养咨询服务。其他服务,如专业体重管理指导(即 Positively Me)或体重、营养和身体活动生活方式指导,可通过 Well Wisconsin 计划获得。随时了解提供商信息您的网络选项使您可以从许多本地和区域提供商处获得高质量的护理。在选择时,请考虑您的居住地以及您的初级保健提供者的所在地。如果您希望在威斯康星州东部获得初级保健,请选择 Dean Health Plan – Prevea360 East。该 HMO 服务区包括东北部各县:布朗、卡卢梅特、多尔、基瓦尼、马尼托瓦克、马里内特、梅诺米尼、奥康托、奥塔加米、肖瓦诺和希博伊根。您可以在随附的服务区地图中找到更多网络详细信息,或者探索提供商搜索工具并在威斯康星州团体健康保险计划网页(网址为 Prevea360.com/Wi-Employees)的“提供商和信息”部分中找到可打印的提供商目录。主要医疗系统包括:
摘要:眼后段疾病的治疗面临挑战,因为眼内结构复杂,可充当强大的静态和动态屏障,限制局部和眼内药物的渗透、停留时间和生物利用度。这妨碍了有效治疗,需要频繁给药,例如定期使用眼药水或到眼科医生处进行玻璃体内注射,以控制疾病。此外,药物必须是可生物降解的,以最大限度地减少毒性和不良反应,并且要足够小,不会影响视轴。可生物降解的纳米药物输送系统 (DDS) 的开发可以解决这些挑战。首先,它们可以在眼组织中停留更长时间,从而减少给药频率。其次,它们可以穿过眼部屏障,为无法接近的目标组织提供更高的生物利用度。第三,它们可以由可生物降解和纳米尺寸的聚合物制成。因此,可生物降解纳米级 DDS 的治疗创新已被广泛用于眼科药物输送应用。在这篇综述中,我们将简要概述用于治疗眼部疾病的 DDS。然后,我们将研究当前治疗后段疾病面临的挑战,并探索各种类型的可生物降解纳米载体如何增强我们的治疗手段。对 2017 年至 2023 年期间发表的临床前和临床研究进行了文献综述。通过可生物降解材料的进步,加上对眼部药理学的更好理解,基于纳米的 DDS 得到了迅速发展,显示出克服临床医生目前遇到的挑战的巨大希望。
a 移动多传感器研究组 卡尔加里大学测绘工程系,2500 University Drive NW,卡尔加里,艾伯塔省,T2N 1N4 加拿大 awlip@ucalgary.ca,naser@geomatics.ucalgary.ca b Applanix 公司,85 Leek Crest,安大略省列治文山,L4B 3B3,加拿大 – mmostafa@applanix.com 第六委员会,第六工作组/4 关键词:航空测绘、空中三角测量、GPS、INS、直接地理配准、视轴校准 摘要:过去几年,移动测绘系统 (MMS) 在传感器分辨率、尺寸、数据速率、功率要求和成本方面都取得了重大进展,此外,传感器集成和数据后处理及过滤技术也取得了进展。因此,在不同的测绘应用中使用此类系统已变得具有成本效益,并且在某些应用中成为一种使能技术。本文研究了对于正确操作不同平台和不同应用的移动测绘系统至关重要的几个主题。详细讨论了传感器放置、传感器同步、系统校准和传感器的初始对准。将确定大多数系统共有的特征,并提出用于机载和陆地测绘应用的 MMS 集成的统一模型,其中评估了合适的可观测量,并讨论了影响系统性能的因素。一些结果中将介绍商用机载 MMS 的示例。1.简介
摘要 — 本文介绍了一种可扩展 W 波段相控阵系统的设计和实现,该系统具有内置自对准和自测试功能,基于采用 TowerJazz 0.18 µ m SiGe BiCMOS 技术制造的 RFIC 收发器芯片组,其 f T / f MAX 为 240/270 GHz。该 RFIC 集成了 24 个移相器元件(16TX/8RX 或 8TX/16RX)以及直接上变频器和下变频器、带素数比倍频器的锁相环、模拟基带、波束查找存储器和用于性能监控的诊断电路。设计了两个带有集成天线子阵列的有机印刷电路板 (PCB) 插入器,并将其与 RFIC 芯片组共同组装,以产生可扩展的相控阵瓦片。瓦片通过菊花链式本振 (LO) 同步信号彼此相位对齐。本文介绍了 LO 错位对波束方向图的影响的统计分析。16 个瓦片组合到载体 PCB 上,形成一个 384 元件 (256TX/128RX) 相控阵系统。在 256 个发射元件的视轴处测量到的最大饱和有效全向辐射功率 (EIRP) 为 60 dBm (1 kW)。在 90.7 GHz 下运行的无线链路使用 16-QAM 星座,在降低的 EIRP 为 52 dBm 的情况下,产生的数据速率超过 10 Gb/s,等效链路距离超过 250 m。
摘要:眼后段疾病的治疗面临挑战,因为眼内结构复杂,可充当强大的静态和动态屏障,限制局部和眼内药物的渗透、停留时间和生物利用度。这妨碍了有效治疗,需要频繁给药,例如定期使用眼药水或到眼科医生处进行玻璃体内注射,以控制疾病。此外,药物必须是可生物降解的,以最大限度地减少毒性和不良反应,并且要足够小,不会影响视轴。可生物降解的纳米药物输送系统 (DDS) 的开发可以解决这些挑战。首先,它们可以在眼组织中停留更长时间,从而减少给药频率。其次,它们可以穿过眼部屏障,为无法接近的目标组织提供更高的生物利用度。第三,它们可以由可生物降解和纳米尺寸的聚合物制成。因此,可生物降解纳米级 DDS 的治疗创新已被广泛用于眼科药物输送应用。在这篇综述中,我们将简要概述用于治疗眼部疾病的 DDS。然后,我们将研究当前治疗后段疾病面临的挑战,并探索各种类型的可生物降解纳米载体如何增强我们的治疗手段。对 2017 年至 2023 年期间发表的临床前和临床研究进行了文献综述。通过可生物降解材料的进步,加上对眼部药理学的更好理解,基于纳米的 DDS 得到了迅速发展,显示出克服临床医生目前遇到的挑战的巨大希望。
棘阿米巴角膜炎 一种罕见但严重的视力破坏性角膜炎症,由污染水中的寄生虫引起。 调节 通过改变眼睛晶状体的形状来改变眼睛的聚焦能力,使近处物体的光线聚焦到视网膜上,从而在远处获得清晰的视野。 感觉计 测量角膜或眼睑边缘敏感度的仪器。 对准配戴 选择 *BOZR 使其与角膜表面平行的配戴技术。 缺氧 缺乏氧气。 角膜尖 角膜的顶端,通常位于瞳孔和视轴正上方。 无晶状体 白内障摘除后,眼睛的天然晶状体的缺失或丢失。 顶端间隙 隐形眼镜后表面与角膜顶端之间的距离。 顶端触痛 一种隐形眼镜配戴,通常是平的,镜片的后表面位于角膜顶端。非球面镜片 适用于边缘性散光患者和老花眼患者。 散光角膜切开术 一种通过将角膜从椭圆形重塑为更球形来矫正散光的外科手术。最适合散光轻度或中度的患者。 弱视 尽管已通过最佳的眼镜或隐形眼镜矫正,但单眼或双眼视力下降,且眼部结构无病变。是指大脑中与特定眼睛相对应的部分智力发育不良。 像差控制镜片 通过控制球面像差来改善视觉功能的隐形眼镜。 散光 一种屈光状况,角膜、晶状体或二者都是椭圆形而不是球形,并且光在所有子午线的折射并不相同。 高压灭菌器 一种使用压力蒸汽对隐形眼镜进行灭菌的腔室。自动板层角膜切除术一种针对极度近视患者的新手术,其中仅将受影响的角膜的一小部分与来自供体角膜的切片一起移植。
关键词:倾斜影像、相机校准、3D 城市模型、多传感器、视轴校准 摘要:除了创建虚拟动画 3D 城市模型、国土安全和城市规划分析外,准确确定倾斜影像中的几何特征也是当今的一项重要任务。由于单幅图像数量巨大,控制点的减少迫使人们使用直接参考设备。这需要精确的相机校准和额外的调整程序。本文旨在展示各种校准步骤的工作流程,并将展示使用最终 3D 城市模型进行校准飞行的示例。与大多数其他软件不同,倾斜相机不是作为与天底传感器共同配准的传感器使用,所有相机图像都作为单个预定向数据进入 AT 过程。这样可以实现更好的后校准,以便检测单个相机校准中的变化和其他机械效应。所示的传感器(倾斜成像仪)基于 5 台 Phase One 相机,其中天底相机配备 50 毫米镜头,像素为 80 MPIX,而倾斜相机使用 80 毫米镜头以 50 MPix 捕捉图像。相机牢固地安装在外壳内,以防止物理和热变形。传感器头还承载着一个连接到 POS AV GNSS 接收器的 IMU。传感器由陀螺仪支架稳定,陀螺仪支架可产生浮动天线 -IMU 杠杆臂。它们必须与原始 GNSS-IMU 数据一起注册。相机校准程序基于一次特殊校准飞行执行,共拍摄了 5 台相机的 351 张照片并记录了 GPS/IMU 数据。这项特定任务设计在两个不同的高度,每个飞行高度都有额外的十字线。每个曝光位置的五张图像没有重叠,但在区块中有很多重叠,导致每个点的测量次数高达 200 次。每张照片上平均有 110 个分布均匀的测量点,这对于相机校准来说是一个令人满意的数字。第一步,借助天底相机和 GPS/IMU 数据,计算出初始方向校正和径向校正。通过这种方法,整个项目只需一步即可计算和校准。在迭代过程中,分别打开摄像头的径向和切向参数,然后检查相机常数和主点位置并最终进行校准。除此之外,孔侧校准既可以基于天底相机及其偏移量进行,也可以独立于每个相机进行,与其他相机无关。无论如何,这必须在完整的任务中执行,以获得单个摄像头之间的稳定性。确定节点到 IMU 中心的杠杆臂需要比单个相机更加谨慎,特别是由于倾斜角度较大。准备好所有这些步骤后,您将获得一个高精度传感器,该传感器能够完全自动提取数据,并快速更新现有数据。然后可以在完全 3D 环境中频繁监测城市动态。