在提供课程时,将向学生提供课程的课程概述。课程将根据拉合尔旁遮普大学通知的课程指南进行。CORE COURSES (Credits = 89) Phys 1101 ELEMENTARY MECHANICS (CR3) Prerequisite None Vector derivatives and operations, divergence theorem, Stokes' theorem, particle dynamics with emphasis on effect of frictional and drag forces on motion, non-inertial frames and pseudo forces, work-energy theorem, conservative and non-conservative forces, two particle and many-particle systems, centre of固体物体的质量,动量变化可变质量系统。质量参考框架中的碰撞,旋转动力学,重点是平行轴定理,各种形状的身体惯性矩,旋转和翻译运动的结合。角动量,旋转对象的角速度和稳定性,球形质量分布的重力效应,开普勒的行星运动定律。建议:
MPU6050是一种6轴运动传感器,它集成了3轴加速度计和3轴陀螺仪,通常用于运动跟踪和方向检测。虽然加速度计提供了准确的长期角度测量值,但易于噪声,而陀螺仪则提供稳定的短期数据,但随着时间的推移会流动。为了解决这些局限性,实现了一个互补的过滤器来融合两个传感器的优势,从而实现了可靠和平滑的角度估计。本文描述了使用Arduino平台和MPU6050传感器的互补过滤器的集成。该方法将基于加速度计的倾斜读数与陀螺式角速度数据结合在一起,以实时计算方向。该方法在计算上是轻巧的,使其适用于具有有限处理功能的系统,例如Arduino。此实现适用于各个领域,包括机器人,无人机和可穿戴运动跟踪设备。
磁耦合:总体考虑一个固体式圆柱体,其围绕其对称轴均匀地旋转,其固定角速度ω均匀地旋转。在零温度下,所有电子形成库珀对,并将其凝结成带电的超氟,该超流体与旋转的,带正电荷的离子晶格相互作用。在离子晶格与带电的超氟凝结物之间的机械摩擦力中,可能会天真地认为,超氟体成分将保持在静态的,非旋转状态,以最大程度地减少其动能。这种行为类似于缺乏局限于非常缓慢旋转容器中的中性超流体的旋转反应。在这里,晶格的旋转诱导带正电荷离子的圆形电流。该电流沿旋转轴产生一个磁场,被带电的超流体视为外部背景场。
要执行任何算法,应该能够以任意量子状态准备量子。这意味着必须有一些方法可以访问Bloch Sphere上的任何点。被提及,两级系统的自由演化包括围绕哈密顿矢量方向的旋转,其角速度e 1-e 2(使用磁矩类比称为prepession)。换句话说,自由进程可访问所有具有相同初始极角θ'的状态。要改变极角,一种方法是应用矩形脉冲,突然改变了哈密顿量,从而改变了Bloch矢量旋转的轴。突然的脉冲切换意味着在自由进动的时间尺度上,时间依赖性的哈密顿量发生了如此之快,以至于可以将状态向量视为在切换时间间隔内将状态矢量视为时间无关 - 冷冻。很明显,将哈密顿矢量的方向更改为任何给定值的可能性提供了访问Bloch球体上任何点的手段。
具有各向异性,周期性电势景观的分子设备可以用作布朗电动机。当潜在的景观用化学反应或外力循环切换时,这种设备可以利用随机的布朗式波动产生定向运动。最近,用电动开关的DNA折纸转子带有设计的带有棘轮样的障碍物的电动DNA折纸转子来证明了定向的布朗运动状旋转运动。在这里,我们还证明了最初并未设计的DNA折纸转子的固有各向异性,因为布朗运动设备足以导致运动运动。我们表明,对于外部开关场的低振幅,这些设备作为布朗电动机运行,而在较高幅度下,通过过度阻尼电动机的确定性运动可以更好地描述运动。我们表征了这两个方案中运动的幅度和频率依赖性,表明在初始陡峭上升后,角速度峰值和下降,用于过度驾驶振幅和频率。转子运动的特征通过系统的简单随机模型很好地描述。
摘要 本文介绍了 FLEXOP H2020 EU 项目框架内无人驾驶实验飞机减速板的建模、系统识别、仿真和飞行测试。由于飞机配备了响应缓慢的喷气发动机,因此在加速飞机进行颤振测试后,需要使用减速板来增加减速,以便保持在当局批准的有限空域内进行飞行测试。减速板由伺服电机、开启机构和减速板控制面本身组成。在简要介绍了演示飞机、减速板设计和实验测试台后,本文参考了以前的工作,对建模和系统识别进行了深入描述。系统识别包括确定高度非线性(饱和和负载相关)伺服执行器动力学以及非线性气动和机械特性,包括刚度和惯性效应。相对于之前的工作,新的贡献是考虑了负载打开或关闭的统一伺服角速度极限模型,考虑了整个偏转和飞机空速范围的减速板法向力和阻力模型的详细构建和评估,提出了统一的气动-机械非线性模型,给出了减速板角度、动态压力和伺服扭矩之间的直接关系,以及基于传递函数的机构刚度和惯性效应建模。确定的伺服动力学模型包括系统延迟、内部饱和、前面提到的负载相关角速度极限模型和传递函数模型。基于考虑减速板整个开启角度和动态负载范围的试验台测量验证了伺服模型。还考虑了新的、未发表的测量结果,其中伺服负载随着伺服移动而逐渐增加,以在更现实的情况下验证模型。然后构建完整的减速板模型并在模拟中测试以检查实际行为。下一步,通过在软件在环 (SIL) Matlab 仿真中使用飞机的基线控制器飞行模拟测试轨迹,对集成到 FLEXOP 飞机非线性仿真模型中的减速板模型进行测试。首先,将独立的减速板仿真与 SIL 结果进行比较,以验证减速板模型与非线性飞机仿真的完美集成。最后,使用实际飞行数据来验证和更新减速板模型并显示减速板的有效性。然后比较有和没有空气制动器的减速时间,强调空气制动器在测试任务中的实用性。
要对运动进行全面分析,生物力学需要运动学和动力学数据。在循环中,使用主要集中在上肢和下肢的关节角度的运动捕获系统获得运动学数据。实际上,在自行车拟合分析中,经常研究有关下肢关节角速度和关节角加速度的信息。至于动力学,有必要使用仪器踏板来了解下肢施加到踏板上的力。使用从踏板获得的信息,可以通过诸如有效性索引(IE)等指标来评估踏板技术。IE定义为切向力与施加在踏板上的总力的比率(Millour,Velásquez和Domingue,2023年)。尽管该指标非常重要,但由于技术的成本和少数供应商的成本,仍存在一些差距,这限制了其在自行车配件中的实施。此外,这些因素限制了对影响踏板技术的生物力学因素的理解。在自行车拟合过程中,尚不清楚将力向踏板的传播是否有效(Bini,Hume和Croft,2011年; Menard,
摘要:我们之前曾报道过可穿戴环路传感器,它能够精确监测膝关节屈曲,与现有技术相比具有独特的优势。然而,迄今为止的验证仅限于单腿配置、离散屈曲角度和体外(基于幻影)实验。在这项工作中,我们向前迈出了重要一步,探索以连续方式在体内监测膝关节屈曲角度。本文提供了双侧传感器操作的理论框架,并报告了之前未曾报道过的可穿戴环路传感器的详细误差分析。这包括校准曲线的平坦度,这限制了小角度(例如在行走过程中)的分辨率,以及在高角速度(例如在跑步过程中)下存在运动电动势 (EMF) 噪声。还介绍了一种用于制造柔性和机械坚固环路的新型方法。电磁模拟和基于幻影的实验研究优化了设置并评估了可行性。然后对进行三项活动(步行、快走和跑步)的人类受试者进行概念验证体内验证,每项活动持续 30 秒,重复三次。结果表明,在大多数情况下,均方根误差 (RMSE) 小于 3 ◦。
在人机交互中,传感器对于保证实时应用中的稳定性和高性能至关重要。尽管如此,机器人的精确便携式传感器通常成本高昂,而且使用免费软件处理信号的灵活性很低。因此,我们提出了一种可穿戴传感器网络来测量人机交互系统中的下肢角位置。实现该目标的方法包括使用低成本设备实现无线网络、验证设计要求以及通过概念验证进行验证。设计网络的要求包括低信息丢失、实时通信和传感器融合,以使用陀螺仪和加速度计估计角位置。因此,开发的传感器网络具有基于 ESP8266 微控制器的客户端-服务器架构。此外,该网络使用标准 802.11 b/g/n 来传输角速度和加速度测量值。此外,我们实现了用户数据报协议 (UDP) 协议,以 10 毫秒的采样时间实时运行。最后,我们实施了概念验证以显示系统的有效性。因此,我们使用卡尔曼滤波器来估计脚、小腿、大腿和臀部的角度位置。结果表明,实施的传感器网络适用于实时机器人应用。
在行星防御计划框架内,NASA 开发了双小行星重定向测试 (DART) 任务,意大利航天局也参与其中。DART 的航天器将充当动能撞击器,故意撞击 Didymos 双星系统(即 Didymos-B)的小卫星,而撞击的影响将由一颗小型卫星、用于小行星成像的意大利轻型立方体卫星 (LICIACube) 和地面望远镜观测。意大利航天局 (ASI) 的一项任务 LICIACube 将以大约 6.5 公里/秒的相对速度飞行,它将记录撞击的影响、陨石坑和碰撞产生的羽流的演变。LICIACube 必须保持小行星的指向角速度约为 10 度/秒,以便从靠近 Didymos-B 表面的小行星旁飞过。LICIACube 获取的图像将通过自主导航算法在机上进行处理,以识别小行星系统并控制卫星姿态。他们还将为科学界提供帮助,并为航天局率先发起的行星防御计划提供反馈。这项深空任务基于一个规模小但技术含量高的平台,其开发由意大利科技界和科学界共同参与。