远距离学习计划人脑/绵羊脑解剖的解剖学本指南适用于参与人脑和绵羊脑解剖的AIMS解剖结构的中学生。计划将由目标解剖专家提出。在这项活动中,学生将通过观察,研究和检查人类标本来更加熟悉人脑的解剖结构。主要重点是解剖学,功能和病理学。那些参加绵羊大脑解剖的学生将有机会剖析和比较解剖结构。在本文档的末尾,您将为您的学生找到解剖图,词汇评论和预/后测试。将涵盖以下主题:1。神经系统的神经元和支撑细胞2。神经系统的组织(中央和周围神经系统)4。大脑的保护覆盖物5。大脑解剖学,包括脑半球,小脑和脑干6。脊髓解剖7。颅神经和脊神经目标:学生将能够:1。定义与人脑和脊髓相关的选定项; 2。确定大脑的保护结构; 3。识别大脑的四个叶; 4。解释大脑表面积,结构和大脑功能之间的相关性。5。讨论常见的神经系统疾病和治疗。6。描述药物和酒精对大脑的影响。7。正确标记了人脑的图
摘要:长期以来,显微镜技术的进步一直推动着神经科学的重大进步。超分辨率显微镜 (SRM) 也不例外,它以打破光学显微镜的衍射障碍而闻名。SRM 可以实现纳米结构的解剖设计和动力学,而这些是传统光学显微镜无法解决的,从神经元和神经胶质细胞的精细解剖结构到它们内部的细胞器和分子。在这篇评论中,我们将主要关注一种特定的 SRM 技术(STED 显微镜),并解释我们多年来为使其在神经科学领域实用和可行而取得的一系列技术进展。我们还将重点介绍关于神经元和神经胶质细胞动态结构-功能关系的几项神经生物学发现,这些发现说明了活细胞 STED 显微镜的价值,尤其是当与其他现代方法相结合时,可以研究脑细胞的纳米级行为。
VBM 数据 ● 使用默认值分割数据(对纵向数据使用分段纵向数据)。现在可用于 VBM 的结果分割保存在“mri”文件夹中,灰质的分割名为“mwp1”,白质的分割名为“mwp2”。如果您使用了纵向管道,则灰质的默认分割名为“mwp1r”或“mwmwp1r”(如果选择了用于检测较大变化的纵向模型)。 ● 获取总颅内容积 (TIV) 以校正不同的脑部大小和体积。选择保存在“报告”文件夹中的 xml 文件。 ● 使用检查样本检查 VBM 数据的数据质量(可选择将 TIV 和年龄视为干扰变量)。从第一步中选择灰质或白质分割。 ● 平滑数据(建议起始值为 6-8mm 1)。从第一步中选择灰质或白质分割。 ● 指定具有平滑灰质或白质分割的二级模型,并检查设计正交性和样本同质性:
约书亚·M·韦斯 1,2,3 , 米兰达·V·亨特 2 , 内莉·M·克鲁兹 2 , 阿丽安娜·巴吉奥里尼 4 , 莫希塔·泰戈尔 2 , 马伊伦 1,2,3 , 桑德拉·米萨莱 5 , 米开朗基罗·马拉斯科 5 , 特蕾莎·西蒙-维莫特 2 , 纳撒尼尔·R·坎贝尔 1,2,6,7 , 费莉希蒂纽厄尔 8,詹姆斯·S·威尔莫特 9,彼得·A·约翰逊 8,约翰·F·汤普森 9,10,11,乔治娜·V·朗 9,10,12,约翰·V·皮尔逊 8,格雷厄姆·J·曼 9,13,14,理查德·A·斯科耶 9,10,11,15,尼古拉·瓦德尔 8,16,艾米丽·D.蒙塔尔 2 , Ting-Hsiang Huang 2 , Philip Jonsson 17,18,19 , Mark TA Donoghue 17 , Christopher C. Harris 17 , Barry S. Taylor 17,18,19 , Tianhao Xu 6 , Ronan Chaligné 6 , Pavel V. Shliaha 20,21 , Ronald Hendrickson 21 , Achim A. Jungbluth 22 , Cecilia Lezcano 22 , Richard Koche 23 , Lorenz Studer 4 , Charlotte E. Ariyan 24 , David B. Solit 17,19,25 , Jedd D. Wolchok 17,25,26,27 , Taha Merghoub 27 , Neal Rosen 5 , Nicholas K. Hayward 8 , Richard M. White 2,28* 1 Weill康奈尔 / 洛克菲勒 / 斯隆凯特琳三机构 MD-PhD 项目,纽约,纽约州,10065,美国 2 癌症生物学和遗传学系,纪念斯隆凯特琳癌症中心,纽约,纽约州,10065,美国 3 细胞和发育生物学项目,威尔康奈尔医学科学研究生院,纽约,纽约州,10065,美国 4 发育生物学,干细胞生物学中心,纪念斯隆凯特琳癌症中心,纽约,纽约州,10065,美国 5 分子药理学项目,纪念斯隆凯特琳癌症中心,纽约,纽约州,10065,美国 6 计算和系统生物学,纪念斯隆凯特琳癌症中心,纽约,纽约州,10065,美国 7 生理学、生物物理学和系统生物学研究生项目,威尔康奈尔医学科学研究生院,纽约,纽约州, 10065,美国 8 QIMR Berghofer 医学研究所,昆士兰州布里斯班,4006,澳大利亚 9 悉尼大学澳大利亚黑色素瘤研究所,新南威尔士州悉尼,2006,澳大利亚 10 悉尼大学医学与健康学院,新南威尔士州悉尼,2050,澳大利亚 11 皇家阿尔弗雷德王子医院,新南威尔士州悉尼,2050,澳大利亚 12 皇家北岸医院,新南威尔士州悉尼,2065,澳大利亚 13 澳大利亚国立大学约翰·科廷医学研究院,澳大利亚首都领地,2601,澳大利亚 14 悉尼大学韦斯特米德医学研究中心癌症研究中心,新南威尔士州悉尼,2528,澳大利亚 15 新南威尔士州健康病理学研究所,新南威尔士州悉尼,2099,澳大利亚 16 昆士兰大学医学院,昆士兰州布里斯班,4072,澳大利亚 17 人类纪念斯隆凯特琳癌症中心肿瘤学和发病机制项目,纽约,纽约州,10065,美国 18 纪念斯隆凯特琳癌症中心流行病学和生物统计学系,纽约,纽约州,10065,美国 19 纪念斯隆凯特琳癌症中心玛丽-何塞和亨利 R.克拉维斯分子肿瘤学中心,纽约,纽约州,10065,美国 20 南丹麦大学 VILLUM 生物分析科学中心生物化学和分子生物学系,奥登斯 5230,丹麦 21 纪念斯隆凯特琳癌症中心微化学和蛋白质组学核心设施,美国纽约州纽约 10065 22 纪念斯隆凯特琳癌症中心病理学系,美国纽约州纽约 10065 23 纪念斯隆凯特琳癌症中心表观遗传学研究中心,美国纽约州纽约 10065 24 纪念斯隆凯特琳癌症中心外科系,美国纽约州纽约 10065
解剖表EDU 11.0和操作系统的版权文档具有保留的所有权利。根据版权法,未经版权持有人的事先书面许可,不得复制,传输,转录或翻译为全部或一部分的任何人类或计算机语言。用解剖表或表应用程序创建的所有内容(包括图像和视频)都是解剖学的属性。无明确或暗示的许可,用于用解剖表或表应用程序创建的内容的电子传输,存储,检索或打印内容。没有任何派对/个人可以在未经解剖学明确的书面许可的情况下复制,修改,发布,发送或分发“解剖表”或“表”应用程序的内容。请联系Anatomage以获取更多信息。
1。描述了基因化学的历史。2。原核生物和真核生物中的基因结构对比。3。展示了DNA复制的机理和酶学(解旋酶,原始酶,DNA聚合酶,DNA连接酶)。4。对比原核生物和真核生物中的DNA复制。5。定义RNA的结构并赋予RNA亚型的功能。6。研究分子生物学的中心教条。7。解释转录过程。8。解释了细胞核中转录后修饰的过程。9。解释转录的控制,包括操纵子模型。10。解释翻译的机制并提供了启动,伸长和终止的细节。能力3:学生将通过:
摘要:几十年来,鼻腔给药一直用于治疗局部作用疾病。鼻子也是全身循环和中枢神经系统 (CNS) 的门户。在 SARS-CoV2 时代,用于接种疫苗和预防呼吸道疾病的鼻腔喷雾剂的开发正在增加。随着鼻腔给药应用数量的不断增长,鼻腔靶向区域沉积的作用已成为鼻腔药物开发的一个因素。鼻腔模型等体外工具有助于促进配方和产品开发。鼻腔沉积已被证明与药代动力学结果有关。了解复杂的鼻腔解剖结构和个体间差异可以更好地了解药物的沉积位置。鼻腔模型是人类鼻腔的复制品,已从尸体模型演变为复杂的 3D 打印复制品。它们可以分割成感兴趣的区域以量化沉积,并且已经使用不同的技术来量化沉积。将鼻腔模型程序纳入开发中有助于区分配方或物理形式,例如鼻腔粉末和液体。鼻腔模型还可以帮助制定患者使用说明,以确保药物沉积在目标沉积部位。但是,无论使用哪种技术,都应验证这种体外工具,以确保结果反映体内情况。计算机模拟、CFD 模拟或其他新发展在未来可能通过适当的验证,为当前的建模提供更多方法,尽管鼻腔解剖结构的复杂性和广泛变异性仍将是一个挑战。尽管如此,鼻腔解剖模型将成为提高对鼻腔药物输送理解的有效工具。
引言genetic的影响对人体解剖结构产生了深远的影响,这决定了我们从构想到成年的物理形式的蓝图。DNA序列[1],基因表达模式和调节机制的变化有助于在个人和人群中观察到的解剖结构的多样性。了解解剖学的遗传基础对于阐明正常发育,识别病理条件以及针对单个遗传特征的医疗干预措施至关重要。遗传影响在塑造人类解剖学的复杂挂毯,管理个人和人群中器官和组织的发展,结构和功能方面起着关键作用。对遗传因素如何影响解剖结构的研究不仅对于理解人类发展的基本机制至关重要,而且对临床医学,法医学[2]和进化生物学具有深远的影响。从构想的时刻开始,在DNA中编码的遗传指示协调了分子事件的复杂交响曲,这些交响曲指导细胞的形成和分化为专用组织和器官。遗传序列的变化,从单核苷酸多态性(SNP)到更大的结构变化,可以深刻影响解剖学特征,例如骨形态,器官大小和生理功能。这些遗传变异有助于人类解剖学中观察到的显着多样性[3],反映了遗传性状和对环境压力在进化时间的适应性。了解遗传对解剖结构的影响对于推进医学诊断和个性化医学至关重要。与解剖学变异和先天性异常相关的遗传标志物为临床决策提供了信息,从而基于单个遗传特征,从而实现了量身定制的治疗方法。此外,对解剖结构的遗传调节的见解增强了我们准确解释医学成像发现并有效地计划手术干预措施的能力。除了临床应用之外,解剖结构的遗传研究为人类进化和种群遗传学提供了宝贵的见解。通过检查已经塑造了不同人群中解剖学多样性的遗传适应性[4],研究人员可以重建迁移模式[5],推断环境适应并揭示我们物种的进化史。通过综合当前的知识并突出未来的方向,我们旨在加深对遗传影响如何造成人体解剖结构的理解,并为医疗保健和生物科学的进步做出贡献[6]。
研究:确定粪便微生物群移植(FMT)作为在庇护所和一般实践环境中的幼犬和犬犬类山谷肠炎的辅助疗法的功效和财务可行性。评估FMT如何影响狗和小狗的肠道微生物组,代谢组和病毒脱落
摘要随着冠状动脉程序的增加,了解冠状动脉的解剖模式变得越来越重要,因为它们可能会对患者产生影响。这项研究的目的是对Uberaba大学人类解剖学和病理实验室的心脏冠状动脉进行详细分析(Uniube)。此主题之所以选择与了解血流改变有关的病理变化的相关性。在20个月内进行了一项横断面分析观测研究:2022年8月至2024年4月。根据文献中描述的心脏解剖结构,该研究的材料由40个保存的尸体心脏和数据收集组成,该材料基于一个带有先前准备的问题的脚本。在进行的研究中,在分析的心脏总数中,有四个具有不规则的冠状动脉途径,总计10%。基于普遍接受的冠状动脉分支模式,发现了13个改变,总计33%。其中,主要和最稀有的是前降动脉的双重起源,其中一个分支起源于右冠状动脉,一个分支来自左冠状动脉。关于冠状动脉优势的模式,在87%的病例中,正确的优势主要是占主导地位。通常,这项研究将有助于更好地理解心脏解剖学对了解临床事件的重要性,对检查的正确性能和解释以及对患者的手术方法的重要性。关键字:冠状动脉;冠状动脉异常;解剖学。摘要随着冠状动脉程序的增加,对冠状动脉解剖模式的理解变得越来越重要,因为它们可能会对患者产生影响。这项研究旨在详细介绍乌贝拉巴大学人体解剖学和病理实验室(Uniube)心脏心脏的冠状动脉,由于其与血液流动变化导致的病理变化相关,因此选择了该主题。对横向分析观测类型的研究,有效期为20个月:2022年8月至2024年4月。根据文献中描述的心脏解剖结构,该研究的材料由40个尸体心脏保守,数据收集基于具有先前详细问题的脚本。在所做的研究中,在分析的心脏总数中,有四个包含不规则的冠状动脉路径,总计10%。基于普遍接受的冠状动脉分支模式,发现了13个变化,总计33%。中,主要和最稀有的是先前下降动脉的双重起源,该分支来自右冠状动脉和左冠状动脉的一个分支。关于冠状动脉域模式,在87%的病例中,正确的优势占主导地位。关键字:冠状动脉;冠状动脉异常;解剖学。研究将有助于最佳理解心脏解剖学对医学界的重要性,对临床事件的理解,对检查的正确表现和解释以及患者的手术方法。