摘要。本研究解决了域级逐步学习问题,这是一种现实但具有挑战性的持续学习场景,在该方案中,域分布和目标类别跨任务各不相同。为处理这些不同的任务,引入了预训练的视力语言模型(VLM),以实现其强大的推广性。但是,这会引起一个新问题:在适应新任务时,预先训练的VLMS中编码的知识可能会受到干扰,从而损害了它们固有的零射击能力。现有方法通过在额外的数据集上使用知识蒸馏来调整VLM来解决它,这需要大量计算。为了有效地解决此问题,我们提出了无知的无干扰知识集成(DIKI)框架,从避免避免信息干扰的角度来保留对VLM的预训练的知识。具体来说,我们设计了一种完全残留的机制,可以将新学习的知识注入冷冻的骨干中,同时引发对预训练的知识的不利影响最小。此外,此残差属性可以使我们的分布感知的集成校准方案明确控制来自看不见的分布的测试数据的信息植入过程。实验表明,我们的二基仅使用训练有素的参数超过了当前的最新方法,并且需要较少的训练时间。代码可在以下网址找到:https://github.com/lloongx/diki。
摘要:聚合物膜的渗透性和反应性与用于货物输送的聚合物体的设计绝对相关。因此,我们在此将阿霉素负载(dox负载)的无反应性和刺激反应性聚合物的结构特征,渗透性和反应性与其体外和体内抗肿瘤性能相关联。聚合物囊泡(PHPMA),与聚[N-(4-异丙基苯甲酰胺)乙基酰胺乙基甲基甲基甲基酯(甲基甲基甲基酯)(Pppha)(Pppha)(pppha)(pppha)(pppha)(pppa),非pphha,nonnon block,nonnon block) poly [4-(4,4,5,5-甲基-1,3,2-二甲苯甲基-2- Yl)甲基丙烯酸酯] [Pbape,反应性氧(ROS) - 响应型块]或Poly [2-(二异丙基氨基)乙酰乙烯乙烯酸乙烯酸乙烯酸乙烯酸乙烯酸乙烯酸乙酯](Pdpa)(pdpa),pdpa,ph-ph-block)。与抗肿瘤活性相比,基于PDPA的聚合体表现出出色的生物学性能,其抗肿瘤活性显着增强。,我们将这种行为归因于酸性肿瘤环境中快速触发的DOX释放,这是由pH响应性多聚合体拆卸pH <6.8所引起的。可能,所选肿瘤模型的ROS浓度不足会削弱Ros响应囊泡降解的速率,而PPPHA块的无反应性质显着影响这种潜在的纳米甲酶的性能。
通过一系列历史事故,我的职业生涯始于分子生物学的撤销。分子生物学的诱惑使我吸引了肿瘤病毒作为细胞的Nu-Cleic酸代谢的实验模型。这些病毒引起癌症是偶然的事实,但最终导致对癌症发病机理的兴趣,从而利用它们了解细胞转化的机制。这使得可以测试源自细胞基因的介导的细胞转化,并且癌细胞行为是由这些基因突变等位基因的作用驱动的。在1979年,我们表明已经通过3-甲基胆碱转化的细胞带有突变的致癌等位基因。这项工作进行了进展,因此到1982年,我的研究小组和其他研究表明人膀胱癌细胞携带了点突变的RAS癌基因,从而直接证明了癌症发病机理的突变理论。
与年龄相关的肌肉干细胞(MUSC)再生能力的减少与细胞自主和非细胞自主变化有关,这是由于全身和骨骼肌环境改变而导致的,最终导致MUSC数量和功能下降。先前的研究表明,通过在激活的MUSC中进行自噬,STAT3在损伤激活再生后驱动MUSC扩张和分化方面起着关键作用。然而,自噬在寿命中逐渐下降,并导致MUSC介导的老年肌肉再生受损。在这里,我们表明STAT3抑制作用恢复了老年MUSC的自噬过程,从而恢复了MUSC促进老年小鼠肌肉再生的能力。我们表明,通过促进自噬相关基因的转录以及在细胞质水平的转录,可以通过靶向EIF2α的STAT3/PKR磷酸化来激活核水平的自噬。这些结果表明STAT3 Inhi-Bition是一种潜在的干预措施,以扭转与年龄相关的自噬块,从而破坏MUSC再生肌肉的能力。他们还揭示了STAT3通过转录依赖性和独立的自噬调节来调节MUSC功能。
我们证明,可以设计中红外跨带过渡的吸收饱和,以10-20 kW cm 2的中等光强度和室温下。该结构由一系列具有明智设计的253 nm厚的GAAS/ALGAAS半导体异质结构的金属 - 气管导体 - 金属金属斑块组成。在低入射强度下,结构在强光 - 耦合方面起作用,并在接近8.9 L m的波长下表现出两个吸收峰。饱和作为向弱耦合方案的过渡,因此,在增加入射强度时向单峰吸收。与耦合模式理论模型进行比较解释了数据,并允许推断相关的系统参数。当泵激光器在空腔频率上调谐时,随着入射强度的增加,反射率会降低。相反,当激光器以极化频率调谐时,反射性非线性会随着入射强度的增加而增加。在这些波长下,系统模仿了MID-IR范围内可饱和吸收镜的行为,这是当前缺失的技术。
过去30年来,远程敏感机器人的出现出现了,将人们与他们无法到达的地方联系起来并与距离的人进行社交互动[60,77,78]。这些技术通常配备了移动基础,并且可以由远程用户控制以在放置机器人的环境中导航。先前的研究已经确定了在家中使用远程敏感机器人[12、13、90]和护理设施[7、16、46、71]。老年人触发机器人的用例中的用例包括远程医疗任命[8,16,46];与家人和看护者进行沟通[18、28、47、63、64];任务管理[24];远程教育[37];和健康监测[24,25]。远程敏感机器人对于居家的老年人来说可能非常有帮助,即使他们在住宅环境中受到限制,也可以进入他们想进入外部世界的地方。与普通老年人相比,家庭居住的老年人的死亡风险明显更高[23],并且受功能障碍和精神疾病的痛苦更大[20,74,81,87]。在过去的十年中,年龄70岁或以上的家中成年人的患病率增加了一倍以上,从5.0%增加到13.0%,并且这一数字继续增加[6]。
分别为5.9±0.9 µ f或83±13 µ f/cm 2; n = 3),尽管阳离子的尺寸非常不同
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在伴侣的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons.org/licenses/4.0/。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在伴侣的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons.org/licenses/4.0/。
作为其DU的一部分,Mavenir利用Intel®Flexran™参考体系结构,该体系结构是VRAN参考实现,可在Intel Xeon可伸缩处理器上有效执行无线访问工作负载。Flexran由几个模块化的虚拟控制功能组成,具有明确定义的接口,可灵活且可编程的1层无线基础结构。Mavenir还利用开源数据平面开发套件(DPDK),尤其是基本设备(BBDEV)库的O-RAN标准AAL实现,以更好地整合PHY层处理中的加速器或FPGA。