2025;出版:2025年1月31日,摘要学术机构是由于大量学生人数,高能源使用,废物产生和广泛的运输需求而导致碳排放的重要贡献者。这项研究估计了Pokhara Metropolitan City(PMC)的八所公立和私立学校的碳足迹(CF),使用GHG协议在三个范围内进行:(1)校车和燃料的排放,(2)电力消费,(2)(2)(2)(2)(3)来自员工和学生车辆,废物,废物,废物,废物,废物,废物,杂物,杂货,教科书,纸和纸,以及Paper和Paper,Paper,Paper,Paper和Paper。通过目的和随机抽样对拥有1000多名学生的学校进行了取样,以确保代表公共机构和私人机构。使用问卷,访谈和学校记录收集数据,同时测量学生的袋子重量来计算范围3的教科书和副本的排放。使用活性数据和排放因子计算为CO 2等效的公制计算。总CF为409.76 mtco 2 E/年,平均为51.22 mtco 2 E/年(私立学校为76.25,公共公共场合26.19)。范围1,范围2和范围3排放分别贡献227.86、5.1和176.8 mtco 2 E。人均CF范围为0.011至0.055 mtco 2 E/年,平均为0.029 mtco 2 E/年。这项研究提供了减少温室气体排放,促进可持续发展并创建碳中性学术机构的关键见解。关键字
2025;出版:2025年1月31日,摘要学术机构是由于大量学生人数,高能源使用,废物产生和广泛的运输需求而导致碳排放的重要贡献者。这项研究估计了Pokhara Metropolitan City(PMC)的八所公立和私立学校的碳足迹(CF),使用GHG协议在三个范围内进行:(1)校车和燃料的排放,(2)电力消费,(2)(2)(2)(2)(3)来自员工和学生车辆,废物,废物,废物,废物,废物,废物,杂物,杂货,教科书,纸和纸,以及Paper和Paper,Paper,Paper,Paper和Paper。通过目的和随机抽样对拥有1000多名学生的学校进行了取样,以确保代表公共机构和私人机构。使用问卷,访谈和学校记录收集数据,同时测量学生的袋子重量来计算范围3的教科书和副本的排放。使用活性数据和排放因子计算为CO 2等效的公制计算。总CF为409.76 mtco 2 E/年,平均为51.22 mtco 2 E/年(私立学校为76.25,公共公共场合26.19)。范围1,范围2和范围3排放分别贡献227.86、5.1和176.8 mtco 2 E。人均CF范围为0.011至0.055 mtco 2 E/年,平均为0.029 mtco 2 E/年。这项研究提供了减少温室气体排放,促进可持续发展并创建碳中性学术机构的关键见解。关键字
简介 温室气体议定书秘书处在 2022 年 11 月至 2023 年 3 月期间征求了利益相关方关于使用企业价值链(范围 3)会计和报告标准(“范围 3 标准”或“标准”)和计算范围 3 排放的技术指南(“范围 3 技术指南”或“技术指南”)的反馈,以了解用户需求,确定可能需要更新或指导的主题,并征求对具体更新或新指南的建议。 大约 350 名个人和/或组织对范围 3 调查提供了回复。请参阅此处的范围 3 利益相关方调查回复详细摘要(“范围 3 调查回复详细摘要”)。 除了范围 3 调查之外,受访者还有机会提交提案。本文档总结了范围 3 提案提交内容。大约提交了 100 份与范围 3 标准和技术指南相关的提案。本文件总结了每个提案提交者提供的反馈。在某些情况下,如果一个或多个提交者提出了类似或相同的建议,则多个提案可能会被归为一组。许多提案提交者也提供了调查回复。通过提案提交的许多反馈与通过调查提供的反馈相似或重复。本文件中包含反馈并不表示将实施给定的建议或提案或将其反映在范围 3 标准或范围 3 技术指南的更新中。本文件不是计划更新的工作范围,而是通过调查收到的反馈报告。本文件的脚注中引用了要求注明出处的每位提案提交者的所属机构和文件名,以及每个文档可在网上公开获取的通用 Dropbox 文件夹链接。一些提案提交者要求匿名。本文件的目录按主题组织。反馈和建议未按优先级或响应频率列出或排序。为了方便交叉引用,本文件中的各节与范围 3 调查回复详细摘要中的各节相对应。本摘要中总结的所有反馈、建议和要求均未按优先顺序列出或排序。
简介 温室气体议定书秘书处于 2022 年 11 月至 2023 年 3 月征询了利益相关方对范围 3 标准和范围 3 技术指导使用情况的反馈,以了解用户需求、确定可能需要更新或额外指导的主题,并征求有关具体更新或新指导的建议。 调查针对温室气体议定书:企业会计和报告标准(“ 企业标准 ”)、温室气体议定书范围 2 指导(“ 范围 2 指导 ”)、企业价值链(范围 3)会计和报告标准(“ 范围 3 标准 ”或“ 标准 ”)、计算范围 3 排放的技术指导(“ 范围 3 技术指导 ”或“ 技术指导 ”)。后两者包含在范围 3 调查中。第四次调查涉及基于市场的核算方法。受访者可以提交提案,并可以选择公开发布其提案。提交的提案超过 230 份,涉及四个调查主题中的一个或多个。大约 350 名个人和/或组织通过范围 3 调查提交了反馈。受访者表现出多种意见。本文件提供了所有受访者反馈的详细摘要。在编写本摘要时,我们尽一切努力完整地反映所提供的反馈范围。没有故意遗漏任何重要反馈。本文件中包含反馈并不表示某项建议将被实施或反映在范围 3 标准或范围 3 技术指南的更新中。本文件不是计划更新的工作范围,而是通过调查收到的反馈报告。温室气体议定书秘书处和治理机构正在确定更新过程中要解决的主题的优先级,包括更新的工作范围和额外的指导和资源。任何更新的目的都将与最佳实践方法保持一致,以确保温室气体核算体系的企业会计和报告标准能够有效地为企业提供严格可靠的会计基础,以便他们衡量、规划和跟踪实现符合全球 1.5°C 目标的科学和净零目标的进展情况。未来的任何更新都将寻求与通过重大披露举措正在制定的会计规则实现协调和互操作性。
量子计算的最终目标是执行超出任何古典计算机的计算。因此,必须非常难以经典地模拟有用的量子计算机,否则可以将经典计算机用于量子设想的应用程序。完美的量子计算机毫无疑问地很难模拟:所需的经典资源随量子数n或电路的深度D的数量成倍增长。这个困难触发了最新的实验,旨在证明量子设备可能已经执行超出经典计算范围的任务。这些实际量子计算设备受到许多破坏性和不精确来源的损失,这些来源限制了实际上可以达到其理论最大的一部分的纠缠程度。它们的特征是指数衰减的保真度f〜ð1 -ϵ nd,误差率为每次操作,对于具有数十个Qubits的电流设备,每次操作的每次操作小于1%,对于较小的设备而言较小。在这项工作中,我们通过证明可以以一台完美的量子计算机所需的一小部分成本进行模拟,从而为真实量子计算机的计算功能提供新的见解。我们的算法使用矩阵乘积状态来压缩量子波函数的表示,该矩阵产品状态能够非常准确地捕获低至中度纠缠的状态。此压缩引入了有限的错误率ϵ,因此算法紧密模仿了实际量子计算设备的行为。我们的算法的计算时间仅与N和D形成鲜明对比的N和D与精确的模拟算法形成鲜明的呈线性增加。我们使用在一维晶格中连接的Qubit的随机电路进行了模拟来说明我们的算法。我们发现,计算功率中的多项式成本可以降低至最小误差ϵ∞。以下低于ϵ∞需要计算资源,以指数增加ϵ∞ = ϵ。对于二维阵列N¼54QUAT和具有控制Z门的电路,可以在几个小时内在笔记本电脑上获得比最先进设备的错误率。对于更复杂的门(例如交换门),然后进行受控旋转,对于类似的计算时间,错误率增加了因子3。我们的结果表明,尽管量子设备达到了高忠诚度,但实际上仅利用了希尔伯特空间的系统的一小部分ð〜10-8Þ。
空间已成为私营部门和公共部门越来越活跃的运营领域。至关重要的是,国防部(DND)具有准确的手段,以保持对部署的太空资产以及周围威胁的能见度和控制。太空域意识(SDA)是一个概念,它是指对部署的太空资产和其他对象的监视和跟踪,以确保运营安全性。当前的SDA方法包括使用地面和太空光学望远镜,以及在上部频段中运行的雷达。两个线元素集(TLE)是轨道数据最易于访问的手段,并提供轨道位置预测,其精度的精度高达1 km,速度为1 m/s。较小的航天器的日益普及,例如立方体和微型卫星作为进行太空操作的经济手段,这增加了对更准确的SDA的需求。本文测试了使用高频(HF)雷达使用视线(LOS)传播和目标检测来实现准确范围和径向速度估计的可行性。国际空间站(ISS)被选为目标,这是由于其尺寸较大和轨道较低的高度。使用20 MHz的工作频率用于刺穿电离层并照亮所选目标。范围多普勒图,并应用校正以补偿大气和滤波器误差。通过夜间传输期和日期传播期比较了电离层在不同水平的太阳能活动中的效果。使用澳大利亚开源软件的总电子含量(TEC)估计计算范围误差,该估计是澳大利亚开源软件提供的高频射线疗法实验室(PHARLAP)。发现,夜间传输不需要高估的TEC,并且不需要校正,而白天的传输测量结果受到较大TEC的极大影响。白天传输产生的估计的电离层范围延迟高达90 km,多普勒校正高达45 Hz。夜间传输的平均延迟为30公里,多普勒校正最大15 Hz。校正后的最终范围测量值在100秒的可见度中,在夜间传输期间,在100秒的可见度中,均方根误差(RMSE)为61 km。具有如此高范围残差,发现HF不适合精确的范围测量值,除非开发出更好的电离层校正方法并应用了更密集的信号处理技术。然而,夜间和白天传播的多普勒测量值均产生的剩余RMSE小于10 Hz。夜间传输范围率残差仅为85 m/s,在TLE精度的误差范围内。这表明HF可用于使用多普勒测量值进行精确测定。
摘要 立法和市场力量要求越来越多的产品声明其环境影响,并进而影响到供应链的各个环节。本文讨论了隔热耐火材料的“从摇篮到大门”生命周期评估 (LCA),包括获取准确的原材料数据和将范围 1 和范围 2 的排放归因于单个产品的挑战。隔热耐火产品可减少热加工过程中的碳排放量,本文介绍了一种区分一流产品和消费级产品的方法。该方法利用热流模型和燃料碳强度计算,涵盖耐火衬里的整个预期寿命。通过生命周期评估测量碳足迹的驱动力 根据联合国政府间气候变化专门委员会 (UN IPCC) 的报告,气候变化导致全球气温升高 1 ,从而导致海平面上升和极端天气事件更加频繁。全球变暖的主要原因是人为温室气体 (GHG) 排放量的增加。立法正在推动对越来越详细的环境影响数据进行测量和申报的必要性。过去几年,许多司法管辖区都要求公司的年度董事报告必须包含能源使用和温室气体排放量 2,3 。最近,欧盟推出了碳边境调整机制 (CBAM) 4 ,这是一种对进入欧盟的碳密集型商品生产过程中排放的碳进行公平定价的工具,并鼓励非欧盟国家进行更清洁的工业生产。CBAM 最初将适用于某些商品和选定前体的进口,这些商品和前体的生产是碳密集型的,并且碳泄漏风险最大:水泥、钢铁、铝、化肥、电力和氢气。这些和其他立法要求公司详细跟踪其范围 1(直接)、范围 2(间接能源排放)以及范围 3(其他间接)环境排放,范围 3 正在日益增加。准确计算范围 3 需要了解原材料和组件对环境的影响。随着利益相关者的观点转向更重要的环境意识,企业在环境、社会和治理 (ESG) 三大支柱中优先考虑可持续性变得至关重要。因此,公司不能只关注一个支柱(例如,只关注治理目标而忽视环境影响)。这样做可能在短期内有利可图,但不利于公司的长期生存能力,因为监管处罚、投资者或其他利益相关者的利益和公众舆论可能会对公司产生负面影响。相比之下,每家公司都会有环境足迹,在价格变得如此之高以至于影响治理支柱之前,减少这种足迹的影响是有限的。随着公众关注度的提高,越来越多的客户询问作为制造过程一部分的行业温室气体排放情况,并要求提供产品对环境影响的信息。上述因素正在推动对其产品的环境影响进行测量和声明的需求。耐火材料也不例外。事实上,它们在 CBAM 中提到的碳密集型产品生产中的影响力,使耐火材料成为