我们描述了两个针对临床文本的任务:命名实体识别(任务 1)和模板槽填充(任务 2)。这两个任务利用 ShARe 语料库中的注释,该语料库包含带有注释的临床记录,提及的疾病以及它们对医学术语和八个附加属性的规范化。这两个任务的目的是确定临床命名实体识别方面的进展,并确定疾病模板槽填充的最新技术。任务 2 包含两个子任务:根据黄金标准疾病跨度进行模板槽填充(任务 2a)以及端到端疾病跨度识别和模板槽填充(任务 2b)。对于任务 1(疾病跨度检测和规范化),有 16 支队伍参加。最佳系统的严格 F1 得分为 75.7,准确率为 78.3,召回率为 73.2。对于任务 2a(给定黄金标准无序跨度的模板槽填充),有六支队伍参与。最佳系统的槽填充综合总体加权准确率为 88.6。对于任务 2b(无序识别和模板槽填充),有九支队伍参与。最佳系统的综合宽松 F(跨度检测)和总体加权准确率为 80.8。
抽象机器学习分类模型学习输入作为特征和输出作为类的关系,以预测新给定输入的类。几项研究工作证明了机器学习算法的有效性,但最新的算法基于概率和逻辑的经典理论。量子力学(QM)已经在许多领域显示其有效性,研究人员提出了几个有趣的结果,这些结果无法通过经典理论获得。近年来,研究人员一直在尝试调查QM是否可以帮助改善经典的机器学习算法。认为,如果正确实施QM理论也可能会激发有效的算法。从这种灵感中,我们提出了量子启发的二进制分类器,该分类基于量子检测理论。我们使用文本语料库和图像库来探索我们提出的模型的效果。我们提出的模型在20个新闻组文本语料库中的几个主题(类别)方面优于最先进的模型。当使用MNIST手写图像数据集时,我们所提出的模型在召回方面优于所有基准。对于大多数类别而言,F量也更高,对于某些类别,精度也更高。我们提出的模型表明,使用量子检测理论可以实现二元分类效果。特别是,我们发现我们的量子启发的二进制分类器可以增加分类的精度,回忆和f量表,而最先进的方法不能。
摘要 人工智能 (AI) 正在从根本上改变 IT 解决方案在所有应用领域(包括地理空间领域)的实施和运行方式。本文概述了基于 AI 的 3D 点云和地理空间数字孪生技术,作为地理空间 AI 的通用组成部分。首先,我们简要回顾一下“AI”一词,并从软件工程的角度概述将 AI 应用于 IT 解决方案所需的技术发展。接下来,我们将 3D 点云描述为地理数据的关键类别,及其在创建地理空间数字孪生基础中的作用;我们解释了机器学习 (ML) 和深度学习 (DL) 方法对 3D 点云的可行性。具体而言,我们认为 3D 点云可以看作具有与自然语言语料库相似属性的语料库,并为 3D 点云制定了“自然性假设”。在主要部分中,我们介绍了一种基于 ML/DL 方法解释 3D 点云的工作流程,该方法无需创建显式空间 3D 模型或显式规则集即可得出 3D 点云的特定领域和特定应用语义。最后,通过示例展示了 ML/DL 如何使我们能够高效地构建和维护地理空间数字孪生(例如虚拟 3D 城市模型、室内模型或建筑信息模型)的基础数据。
EMD/ BID安全性应为在线付款或以银行保证的形式进行9 BID安全性通过Apeprocurement(在线/ BG)仅10次处理费(在线/ BG)零11份(INR)11交易费交易交易费:所有参与的投标人都必须在线支付其最终竞标价值的0.03%的最终竞标价值,该竞标价格 @ 0.03%的在线竞标价值的0.03%。10,000/ - 为政府征收的购买价值。通过在线交易费用以m/s.apts的方式,Vijayawada的交易费用不可退款。语料库基金:估计/引用价值的0.04%。(根据G.O.MS.NO.4,DT.17-02-2005,用于收集语料库基金 @ 0.04%的0.04%通过付费网关在电子销售平台上成功投标)(语料基金 @ 0.04%应从成功的竞标者那里收取,按G.O.MS.NO.4,DT.17-17-17-02-2005收取成功的竞标者。12 Transaction Fee Payable to APTS, VIJAYAWADA 13 Schedule Sale opening date 18.12.2024 @00:00Hrs 14 Schedule Sale closing Date 03.01.2024 @17:00Hrs 15 Bid Submission Closing Date & time 04-01-2024 by 13:00Hrs 16 Bid submission On Line 17 Pre-Qualification& Technical Bid Opening Date (Qualification and Eligibility Stage and Technical出价阶段)
当代人工智能 (AI) 有两条腿:大型训练数据语料库和多参数人工神经网络 (ANN)。数据语料库是代表世界的复杂性和异质性所必需的。由于网络参数和输出对训练数据和输入的依赖性不明确,网络的作用不太透明。这引发了从技术科学到法律伦理等一系列问题。我们假设,在完全不使用网络的情况下,机器学习的透明方法是可能的。通过推广一种无参数、统计一致的数据插值方法(我们对该方法进行了详细的理论分析),我们开发了一个生成建模框架。鉴于机器学习技术在科学中的应用越来越广泛,我们用动物行为领域的一个例子来演示这个框架。我们将这个生成希尔伯特框架应用于小群游动鱼的轨迹。在重现自然行为方面,该框架优于之前开发的最先进的传统数学行为模型和当代基于 ANN 的模型。我们并不认为所提出的框架在所有应用中都会胜过网络,因为过度参数化的网络可以进行插值。然而,我们的框架在理论上是合理、透明、确定且无参数的:它不需要任何计算成本高昂的训练,不涉及优化,没有模型选择,并且易于复制和移植。我们还基于此框架提出了一种易于计算的信用分配方法,该方法可以帮助解决生成式人工智能带来的道德法律挑战。
摘要社交媒体的快速兴起带来了新的数字通信方式,以及令人担忧的在线仇恨言论(HS),这又导致研究人员开发了几种自然语言处理方法以进行检测。尽管在自动化HS检测方面已经取得了重大进步,但针对欧洲葡萄牙语的研究仍然很少(就像几种资源不足的语言中发生的那样)。为了解决这一差距,我们探讨了各种转移学习模型的功效,这些模型在文献中已显示出与其他深度学习模型相比,该任务具有更好的性能。我们采用葡萄牙文本中预先训练的类似于BERT的模型,例如Bertimbau和Mdeberta,以及GPT,Gemini和Mistral Genertral Modelate,用于在葡萄牙在线话语中检测HS。我们的研究依赖于YouTube评论和推文的两个带注释的Corpora,均以注释为HS和非HS。我们的发现表明,YouTube语料库的最佳模型是欧洲葡萄牙推文的Bertimbau Retriant,并针对HS任务进行了微调,正面的F-SCORE为87.1%的正面级别为87.1%,比基线模型优于20%以上,并且比基本的Base Bertimbau相比增加了20%以上。Twitter语料库的最佳模型是GPT-3.5,正级别的F-评分为50.2%。我们还评估了使用内域和混合域训练集的影响,以及在生成模型提示其性能中提供背景的影响。
机构间空间碎片协调委员会(IADC),包括来自各种太空组织的代表是其成员。联合国和平使用外太空委员会(Uncopuos)有权建立和制定几项条约,协议和协议,这些条约,协议和协议实际上已成为国际外层空间的国际法语料库。所有这些论坛开发的国家和国际规范,准则,程序,法规和条约都包含在该国的国际太空法中。为了进行习惯,法律问题在发射服务,卫星电话,卫星广泛 - 铸造,地球观察(遥感),卫星数据处理和传播,导航系统和知识产权。
人类大脑如何处理语言一直是认知神经科学和心理语言学研究的中心课题。研究这个课题的典型方法是学习一个模型来预测受试者在做语言任务时的大脑活动。我们给受试者提供一些刺激——单词、短语、句子等,同时收集他们的生理数据——EEG、MEG、fMRI。这个计算模型背后的理论是语言表征的神经基础与广泛的语言语料库中神经表征的分布特性有关。学习这类预测模型的局限性在于大多数机器学习模型都需要大量数据。然而,在实践中很难获得足够的生理数据。在本研究中,我们利用预训练语言模型——BERT(一种近期广泛使用的预训练语言模型)的优势来缓解数据不足的限制。近年来,预训练语言模型极大地促进了NLP研究的各个方面。得益于预训练模型,几乎所有的NLP下游任务都达到了SOTA性能。语言模型学习预测单词序列的概率。预训练语言模型是使用大型语料库(例如Wikipedia)进行训练,从而编码广泛而一般的语言属性。然后可以通过少量特定于任务的数据集对预训练语言模型进行微调,将其用于下游NLP任务。结果表明,使用BERT和微调后的BERT可以预测EEG和一些凝视特征。这项研究证实了NLP预训练语言模型与人类之间的联系。它也为相关研究打开了一扇窗户。
