注:同源臂位于敲入位点上游和下游约 500–1,000 bp 处。图 1 C 为 SIN3A 示例的供体载体示意图。为选取基因组区域作为同源臂,我们使用 Primer-BLAST ( https://www.ncbi.nlm.nih.gov/tools/primer-blast/ ) 设计了两对引物,分别位于 SIN3A 终止密码子上游 500–1,000 bp 处和下游 500–1,000 bp 处。也可以使用其他程序设计引物。正向和反向引物之间的区域用作同源臂。我们选择 SIN3A 终止密码子上游 501 bp 序列作为左同源臂(图 2 A 和 2B 中的 SIN3A 左),并选择 SIN3A 终止密码子下游 612 bp 序列作为右同源臂(图 2 A 和 2B 中的 SIN3A 右)。
摘要:遗传性视网膜疾病(IRD)影响着全球数百万人,是导致不可逆失明的主要原因。基于药物、基因增强或移植方法的治疗方法已被广泛研究和提出。在视网膜退行性疾病的基因疗法中,快速发展的基因组编辑 CRISPR/Cas 技术已成为一种新的潜在治疗方法。CRISPR/Cas 系统已成为眼科研究中强大的基因组编辑工具,不仅已应用于体内基因治疗的原理证明,而且还已广泛应用于培养皿中疾病模型的基础研究中。事实上,CRISPR/Cas 技术已被用于基因改造人类诱导多能干细胞(iPSC),以体外模拟视网膜疾病,测试体外药物和疗法并为自体移植提供细胞来源。在这篇综述中,我们将重点关注基于 iPSC 的细胞重编程和基因编辑技术的技术进步,以创建准确重现 IRD 机制的人类体外模型,从而开发治疗视网膜退行性疾病的方法。
摘要 基因组和组织工程的进步推动了癌症建模的重大进展和创新机会。人类诱导多能干细胞 (iPSC) 是一种成熟而强大的工具,可用于研究疾病特异性遗传背景下的细胞过程;然而,由于许多转化细胞无法成功进行重编程,它们在癌症中的应用受到了限制。在这里,我们回顾了人类 iPSC 在基因工程背景下对实体肿瘤进行建模的现状,包括如何将基础和主要编辑纳入“自下而上”的癌症建模中,这是我们为使用基因工程诱导转化的基于 iPSC 的癌症模型创造的一个术语。这种方法避免了对癌细胞进行重编程的需要,同时允许以高精度和可控性剖析转化、进展和转移背后的遗传机制。我们还讨论了各个工程方法的优势和局限性,并概述了建立未来模型的实验考虑因素。
1 德国海德堡大学曼海姆大学医学中心(UMM)医学院第一医学系,邮编 68167 曼海姆;rujia.zhong@medma.uni-heidelberg.de (RZ);schimanski.t@gmail.com (TS);feng.zhang@medma.uni-heidelberg.de (FZ);huan.lan@medma.uni-heidelberg.de 或 lh6402196@126.com (HL);alyssa.hohn@web.de (AH);qiang.xu@medma.uni-heidelberg.de (QX);mengying.huang@medma.uni-heidelberg.de (MH);zhenxing.liao@medma.uni-heidelberg.de (ZL);lin.qiao@medma.uni-heidelberg.de (LQ); zhen.yang@medma.uni-heidelberg.de (ZY); yingrui.li@medma.uni-heidelberg.de (YL); zhihan.zhao@medma.uni-heidelberg.de (ZZ); xin.li@medma.uni-heidelberg.de (XL); roselena1996@gmail.com (LR); sebastian9876@googlemail.com (SA); lasse-maywald@web.de (LM); jonasnelsonmueller@googlemail.com (JM); hendrik.dinkel@yahoo.de (HD); yannick.xi@medma.uni-heidelberg.de (YX); siegfried.lang@umm.de (SL); ibrahim.akin@umm.de (IA) 2 DZHK(德国心血管研究中心),合作伙伴网站,68167 曼海姆,德国; narasimha.swamy@mdc-berlin.de (NS); mandy.kleinsorge@gwdg.de (MK); sebastian.dieck@mdc-berlin.de (SD); lukas.cyganek@gwdg.de (LC) 3 西南医科大学心血管研究所,教育部医学电生理重点实验室,四川省医学电生理重点实验室,泸州 646000,中国 4 苏黎世大学心脏中心心脏病学系,Rämistrasse 100,8091 苏黎世,瑞士;ardan.saguner@usz.ch (AS); first.duru@usz.ch (FD) 5 海德堡大学人类遗传学研究所人类遗传学系,69120 海德堡,德国; johannes.jannsen@uni-heidelberg.de 6 马克斯·德尔布吕克分子医学中心,13125 柏林,德国 7 哥廷根大学医学中心心脏病学和肺病学诊所干细胞科,37075 哥廷根,德国 8 波鸿鲁尔大学贝格曼希尔大学医院,44789 波鸿,德国;ibrahim.elbattrawy2006@gmail.com * 通讯地址:xiaobo.zhou@medma.uni-heidelberg.de;电话:+49-621-383-1448;传真:+49-621-383-1474 † 这些作者对本文的贡献相同。‡ 这些作者为高级作者。
摘要:甲氨蝶呤 (MTX) 是治疗类风湿性关节炎 (RA) 的一线疗法,然而,其使用可能受到副作用(尤其是注射后不适)的限制。当患者不耐受或反应迟钝时,可能需要二线或抗体疗法。叶酸靶向脂质体制剂 MTX (FL-MTX) 对关节炎爪有亲和性,可预防小鼠胶原诱导性关节炎 (CIA) 的发生。我们将药物与脂质的摩尔比优化为 0.15,并证明了这种形式在每周两次腹膜内 (ip) 注射 2 mg/kg MTX 时的治疗效果。这些改进的脂质体在发炎关节中的存在与爪肿胀程度和骨重塑活性成正比。与游离物质相比,FL-MTX 的肝肾消除率较低。 FL-MTX 腹腔注射或皮下注射 (sc) 的效果相同,每周两次 2 mg/kg FL-MTX(药物/脂质 0.15)在降低小鼠 CIA 模型的发病率和肿胀方面与 35 mg/kg MTX(相同途径和时间表)的效果相似或更有效。这些结果表明,FL-MTX 是一种比游离 MTX 治疗更有效的纳米治疗制剂。它对患者的潜在益处可能包括减少治疗频率和降低给定反应的总剂量。
摘要:迄今为止,基因治疗一直采用病毒载体来传递治疗基因。然而,分子和细胞生物学的最新进展彻底改变了干细胞和基因治疗领域。几年前,临床试验开始使用干细胞替代疗法,诱导多能干细胞 (iPSC) 技术与 CRISPR-Cas9 基因编辑相结合,开启了神经系统疾病基因治疗的新时代。在这里,我们总结了该研究领域的最新发现并讨论了它们的临床应用,强调了最近的研究在开发创新干细胞和基因编辑治疗方法方面的相关性。尽管致瘤性和免疫原性是现有的障碍,但我们报告了最近的进展如何解决它们,使工程干细胞移植疗法成为一种现实的选择。
摘要:由于人类与实验动物之间的物种差异,对人类心脏病的病理生理学和细胞对药物的反应的全面了解受到限制。此外,人类心肌细胞 (CM) 的分离很复杂,因为通过活检获得的细胞不会增殖,从而无法为体外临床前研究提供足够数量的细胞。有趣的是,人类诱导多能干细胞 (hiPSC) 的发现开辟了在培养皿中生成和研究心脏病的可能性。重编程和基因组编辑技术相结合可在体外生成广泛的人类心脏病,为阐明基因功能和机制提供了绝佳机会。然而,为了挖掘 hiPSC 衍生的 CM 在药物测试和研究成人心脏病方面的潜在应用,需要对成熟和代谢特征进行全面的功能表征。在本综述中,我们重点介绍了将体细胞重新编程为 hiPSC 的方法,以及克服 hiPSC 衍生 CM 不成熟的解决方案,以模拟成人 CM 的结构和生理特性,从而准确模拟疾病并测试药物安全性。最后,我们讨论了如何改进 CM 的培养、分化和纯化,以获得足够数量的所需类型的 hiPSC 衍生 CM,用于疾病建模和药物开发平台。
免疫治疗已成为肝细胞癌综合治疗中不可或缺的一部分,对早期肝细胞癌、晚期肝细胞癌或肝移植后肝细胞癌复发患者均有疗效。临床上最常用的免疫治疗是使用单克隆抗体(如CTLA-4、PD-1)进行免疫检查点抑制,但无法从根本上解决免疫系统减弱和参与杀伤肿瘤细胞的免疫细胞失活的问题。T细胞可以通过基因编辑在细胞表面表达识别肿瘤抗原的T细胞受体(TCR)或嵌合抗原受体(CAR),以提高免疫细胞的特异性和反应性。根据前期研究,TCR-T细胞疗法在实体瘤治疗中明显优于CAR-T细胞疗法,是目前最有前景的实体瘤免疫细胞疗法之一。但其在HCC治疗中的应用仍在研究中。诱导多能干细胞 (iPSC) 诱导和再分化的技术进步使我们能够使用 T 细胞诱导 T 细胞衍生的 iPSC (T-iPSC),然后将其分化为 TCR-T 细胞。这为研究 HCC 模型和探索最佳治疗策略提供了一种便捷的策略。本综述概述了从 T-iPSC 生成新抗原特异性 TCR-T 细胞的方案开发方面的主要进展。我们还将讨论它们在 HCC 治疗中的潜力和挑战。
在过去十年中,在识别与临床疾病相关的遗传异常方面取得了巨大进展。新的实验平台将遗传变异与细胞和器官行为紊乱以及致心律失常心脏表型出现的潜在机制联系起来。诱导性多能干细胞衍生心肌细胞 (iPSC-CM) 的开发标志着在患者特定背景下研究遗传疾病的重要进展。然而,iPSC-CM 技术的重大局限性尚未得到解决:1) 看似相同的基因型扰动中的表型变异性,2) 低通量电生理测量,以及 3) 不成熟的表型可能会影响转化为成人心脏反应。我们已经开发出一种旨在解决这些问题的计算方法。我们应用了我们最近的 iPSC-CM 计算模型来预测 40 种 KCNQ1 遗传变异的致心律失常风险。将 I Ks 计算模型拟合到每个突变的实验数据,并在 iPSC-CM 模型群中模拟每个突变的影响。使用一组已知临床长 QT 表型的 15 个 KCNQ1 突变测试集,我们开发了一种基于致心律失常标志物对 KCNQ1 突变影响进行分层的方法。我们利用此方法预测其余 25 个临床意义不明的 KCNQ1 突变的严重程度。在突变扰动后,在 iPSC-CM 模型群中观察到了巨大的表型变异性。一个关键的新颖之处是我们报告了个体 KCNQ1 突变模型对成人心室心肌细胞电生理学的影响,从而可以预测突变对整个衰老过程的影响。这是将 iPSC-CM 模型中的预测反应转化为成人心室肌细胞在相同基因突变情况下的预测反应的第一步。总体而言,本研究提出了一种新的计算框架,可作为一种高通量方法,根据表型可变人群中的致心律失常行为来评估基因突变的风险。
b“极值图论的一个核心问题是确定给定图 H 在 \xef\xac\x81x 大小的图中诱导副本的最大数量。这个问题最早由 Pippenger 和 Golumbic [13] 研究,近年来已成为广泛研究的主题 [2, 3, 7, 8, 11, 18]。本文重点关注有向图的类似问题。准确地说,设 H 是有向图。有向图 G 中 H 的诱导密度,表示为 i ( H, G ),是 G 中 H 的诱导副本数量除以 | V ( G ) | | V ( H ) | 。对于整数 n ,设 i ( H, n ) 为所有 n 顶点有向图 G 中 i ( H, G ) 的最大值。H 的诱导性定义为为 i ( H ) = lim n \xe2\x86\x92\xe2\x88\x9e i ( H, n )。当 i ( H, n ) 对于 n \xe2\x89\xa5 2 递减时,此极限存在。只有极少数有向图的可诱导性是已知的。一类重要的例子是有向星号。对于非负整数 k 和 \xe2\x84\x93 ,让有向星号 S k,\xe2\x84\x93 为通过对具有 k + \xe2\x84\x93 叶子的星号的边进行有向图,使得中心具有出度 k 和入度 \xe2\x84\x93 。有向星形是所有边都具有相同方向的定向星形,即星形 S k,\xe2\x84\x93 ,使得 k = 0 或 \xe2\x84\x93 = 0。S 2 , 0 和 S 3 , 0 的可诱导性由 Falgas-Ravry 和 Vaughan [5] 确定。为了解决 [5] 中的一个猜想,Huang [10] 扩展了他们的结果,确定了对所有 k \xe2\x89\xa5 2 的 S k, 0 的可诱导性,表明它是通过对入度为 0 的部分进行不平衡的弧爆破而渐近获得的。注意,由于任何有向图的可诱导性等于通过反转所有弧得到的有向图的可诱导性,因此可以考虑有向星号 S k,\xe2\x84\x93 ,使得 k \xe2\x89\xa5 \xe2\x84\x93 。特别地,Huang 的结果还确定了对所有 \xe2\x84\x93 的 S 0 ,\xe2\x84\x93 的可诱导性。 [10] 的结果未涵盖的最小定向星是 S 1 , 1 ,即三个顶点上的有向路径。Thomass\xc2\xb4e [16,猜想 6.32] 猜想 i ( S 1 , 1 ) = 2 / 5,这是通过四个顶点上的有向环的迭代爆炸获得的。
