摘要。为了模拟多纵向模式和中心频率快速波动的影响,我们分别使用了正弦相位调制和线宽加宽。这些效应使我们能够降低主振荡器激光器的时间相干性,然后我们将其用于进行数字全息实验。反过来,我们的结果表明,相干效率随条纹可见度二次下降,并且我们的测量结果与我们的模型一致,正弦相位调制的误差在 1.8% 以内,线宽加宽的误差在 6.9% 以内。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.10.102406]
摘要。为了模拟多纵向模式和中心频率快速波动的影响,我们分别使用了正弦相位调制和线宽加宽。这些效应使我们能够降低主振荡器激光器的时间相干性,然后我们将其用于进行数字全息实验。反过来,我们的结果表明,相干效率随条纹可见度二次下降,并且我们的测量结果与我们的模型一致,正弦相位调制的误差在 1.8% 以内,线宽加宽的误差在 6.9% 以内。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.10.102406]
高级电子学学分 3-0-0:3 课程教育目标: COE1 让学生熟悉先进的电子设备及其应用。 COE2 培养对数字电路设计和使用微控制器连接简单系统的理解。 COE3 培养对通信系统的理解。 UNIT-1 9 L 半导体器件:载流子的漂移和扩散、电荷的产生和复合、直接和间接半导体。PN 结、二极管方程、PN 结的势垒宽度和电容、变容二极管、开关二极管、作为开关和放大器的 FET、光电器件:LED、二极管激光器、光电探测器和太阳能电池。 UNIT-2 9 L 先进电子设备:金属氧化物场效应晶体管 (MOSFET)、MOSFET 中的短沟道效应、鳍式场效应晶体管 (FinFET)、铁电场效应器件和 2D 纳米片器件;新兴存储设备:DRAM、ReRAM、FeRAM 和相变存储器 (PCM) 以及通用存储设备。UNIT-3 10 L 模拟系统:锁相环及其应用频率倍增;模拟乘法器及其应用;对数和反对数放大器;仪表放大器;传感器:温度、磁场、位移、光强度和力传感器组合电路设计:编程逻辑器件和门阵列、7 段和 LCD 显示系统、数字增益控制、模拟多路复用器、基于 PC 的测量系统;序贯电路设计:不同类型的 A/D 和 D/A 转换技术、TTL、ECL、MOS 和 CMOS 操作和规格。 UNIT-4 9 L 通信系统:通信系统的概念、电磁频谱的作用、通信系统术语的基本概念、调制的必要性、幅度、频率、脉冲幅度、脉冲位置、脉冲编码调制、通信系统中的信息、编码、脉冲调制的类型、脉冲宽度调制 (PWM)、脉冲位置调制 (PPM)、脉冲编码调制 (PCM) 的原理;数字通信简介。参考书:
听觉言语幻觉(AVHS)或听到临床和非临床人群中的声音,但它们的机制尚不清楚。精神病的预测处理模型提出,幻觉是由于感知中先前的预期过度加权而产生的。然而,这是未知的,这是否反映了(i)对先验知识的明确调制的敏感性,还是(ii)在模棱两可的环境中自发使用此类知识的先前趋势。进行了四个实验,以检查健康参与者听歧义语音刺激的问题。在实验1a(n = 60)和1B(n = 60)中,参与者在暴露于原始语言模板之前和之后区分了可理解且难以理解的正弦波语音(即对期望的调制)。在自上而下的调制和两种常见的幻觉 - 主持性衡量之间没有观察到任何关系。实验2(n = 99)用不同的刺激(SVOCODEC)证实了这种模式,该模式旨在最大程度地减少歧视中的上限效应,并更加紧密地模拟先前在精神病中报道的自上而下效应。在实验3(n = 134)中,参与者在没有先验的语音的情况下暴露于SVS(即天真的听力)。avh-proneness显着预测了SVS中隐藏的单词的言语预测和成功的回忆,这表明参与者实际上可以自发地解码隐藏的信号。总的来说,这些发现支持了一种先前存在的趋势,即自发地利用容易患AVH的健康人的先验知识,而不是对期望临时调制的敏感性。我们提出了一种跨听觉和视觉方式的临床和非临床幻觉模型,并为未来的研究提供了可测试的预测。
基于Znmgo薄膜的光学微孔谐振器(MRR)在从紫外线到近红外的波长范围内的激光频率转换和电气调制的新型光子设备展开了独特的潜力。在这项工作中,我们探讨了通过光子damascene工艺制备的Znmgo光学MRR的耦合系数(κ)对环的间隙(g)和radius(r)的依赖性。通过调整G和R值,可以实现从0.29到0.78的κ范围。模拟和实验结果都表明,κ随着g或/和增加R.的增加而增加。此外,κ对MRR的结合态和共振峰深度具有显着影响。这些发现将Znmgo光学MRR铺平了在Si上的各种紧凑的非线性光子设备上。
可以使用微型和纳米机电系统(MEMS和NEMS)使用电子方法来驱动谐振器的机械模式。这些谐振器在检测质量[8],[9],力[10],[11],气体[12]和磁[13]方面表现出巨大的潜力。然而,所描述的机制具有几个相关的缺点,例如非线性输出,短路电势以及对高驱动电压的需求。基于调制的光学功率直接耦合到谐振器的光学驾驶已被提议作为解决上述问题的有效方法。使用光学驾驶和读数系统开发了许多机械谐振器。这些谐振器包括光力学磁力计[14],[15],光学加速度计[16]和位移传感器[17],[18]。
在激励器配置中,R&S®TCE900 基座单元添加了用于基带信号处理的编码器板和用于 RF 调制的 RF 板。激励器用途极其广泛。它可用于 DVB-T、DVB-T2、DVB-H、ISDB-T/ISDB-T B、DTMB、ATSC 和 ATSC MobileDTV 数字电视标准以及模拟电视。配备适当的编码器板后,激励器非常适合 DAB/DAB+ 数字音频广播标准和 T-DMB 移动电视应用。所有这些传输标准都可用作软件选项,便于改装。因此,在一个激励器中安装多个标准(例如 DVB-T 和 DVB-T2)没有问题。激励器配置还包括一个 GPS 接收器,可以轻松ilyactivatedviaoptionkey。
如果燃烧器采用轴向气流和旋转百叶窗设计,则添加数字调制和逆变器(变速控制)将确保燃烧的重复准确性,从而优化能源利用。配备逆变器的 Dunphy 数字调制燃烧器可以将负载映射到最大输出的十分之一或十二分之一的调制。这将大大减少锅炉清洗和循环过程,从而减少锅炉和部件的压力。在非电子调制的情况下,持续的冷却和再加热过程会不断膨胀、收缩(从而削弱)锅炉的耐火和金属部件。这会导致高昂的维护和更换成本以及相关的锅炉停机时间增加。再加上滞后效应(如果仍在使用机械调制),能源和现金的浪费将是巨大的。