全基因组测序 (WGS) 在医疗保健和研究中的应用日益广泛,使我们能够识别非编码区域中的大量变异,从而激发了近年来人们对这些非编码变异及其生物学意义的兴趣。越来越多的证据表明,功能性非编码变异可能是外显子组测序队列中遗传性缺失的原因,其中很大一部分患者未得到分子诊断(74)。值得注意的是,全基因组关联研究 (GWAS) 发现的近 90% 的疾病相关变异位于非编码区域,它们富含转录调控元件 (TRE),可能通过扰乱基因调控发挥作用(81)。尽管非编码变异在人类疾病中发挥着至关重要的作用,但由于我们对非编码区域的了解有限,对非编码变异的解释和优先排序长期以来一直受到阻碍。大型联盟(如 ENCODE (32) 和 FANTOM5 (5))和独立研究小组在这一未知领域对潜在功能元件进行注释方面取得了巨大进展。在这篇综述中(图 1),我们首先讨论了调控格局的各种注释,以及这些努力如何帮助解读非编码变异的生物学影响。然后,我们描述了通过整合这些功能注释来确定非编码变异优先次序的生物信息学工具的进展。最后,我们提出了一系列实验分析来评估候选变异的调控潜力。
Yeo, S. J.、Ying, C.、Fullwood, M. J. 和 Tergaonkar, V. (2023)。拓扑关联域中非编码 RNA 的新兴调控机制。Trends in Genetics,39(3),217-232。https://dx.doi.org/10.1016/j.tig.2022.12.003
背景:非小细胞肺癌(NSCLC)是一种常见的恶性肿瘤,具有高死亡率的特点。microRNA-452-5p(miR-452-5p)和Moesin(MSN)已被证明与肿瘤的调控有关。miR-452-5p是否通过靶向MSN来调控NSCLC仍不清楚。方法:分别使用TargetScan数据和GEPIA数据库预测结合位点并分析基因表达。通过EdU染色、划痕愈合和Transwell实验分别测量细胞增殖、迁移和侵袭。结果:预测并验证了miR-452-5p与MSN的结合位点。构建了过表达miR-452-5p的细胞株,miR-452-5p模拟物明显抑制了H322和A549细胞的迁移、侵袭和增殖能力,而pcDNA-MSN可以逆转miR-452-5p的这种作用。pcDNA-MSN通过降低E-cadherin、增加N-cadherin,显著逆转了miR-452-5p模拟物对H322和A549细胞株EMT相关蛋白表达的影响。GEPIA和TCGA数据库分析发现MSN在肺腺癌和肺鳞状细胞癌中表达显著升高。MSN高表达与肺癌晚期呈正相关,提示预后不良。结论:miR-452-5p通过靶向MSN调控H322和A549细胞株的增殖、迁移、侵袭和EMT过程。该研究可能为NSCLC的预防和治疗提供新的靶点。
摘要:克服作物疾病或非生物胁迫的策略之一是使用改良品种。遗传改良可以通过不同的方法实现,包括常规育种、诱发突变、遗传转化或基因编辑。基因功能和通过启动子调节的表达对于转基因作物改善特定性状是必不可少的。启动子序列的多样性在转基因作物的产生中有所增加,因为它们可以导致以特定方式表达负责改良性状的基因。因此,启动子活性的表征对于生物技术作物的产生是必要的。这就是为什么一些分析集中于使用逆转录聚合酶链反应 (RT-PCR)、基因文库、克隆和测序等技术来识别和分离启动子。启动子分析涉及植物遗传转化方法,这是一种确定植物中启动子活性和基因功能的有效工具,有助于了解基因调控和植物发育。此外,对在基因调控中起基础作用的启动子的研究也非常重要。对转基因生物的调控和发育的研究使我们能够了解以时间、空间甚至受控的方式引导基因表达的好处,证实了发现和开发的启动子种类繁多。因此,启动子是生物技术过程中确保基因正确表达的重要工具。本综述重点介绍了各种类型的启动子及其在转基因作物生成中的功能。
总结先前的工作表明,植物可以用作健康,医学和农业用于分子的生产平台。的生产都被典型地体现出来。尤其是,已经设计了烟草的物种,以产生一系列有用的分子,包括昆虫性信息素,这些分子被重视针对农业害虫的特定物种控制。迄今为止,大多数研究都取决于所有途径基因的强构表达。但是,微生物的工作表明,可以通过控制和平衡基因表达来提高产量。综合调节元素可以控制基因表达的时间和水平,因此可用于最大程度地提高异源生物合成途径的产量。在这项研究中,我们证明了使用途径工程和合成遗传因素来控制Nicotiana Benthamiana鳞翅目性信息素的时间和生产水平。我们证明铜可以用作严格调节诱导表达的低成本分子。此外,我们展示了构建体系结构如何影响相对基因表达,因此产物在多基因构建体中产生。我们比较了许多合成正交调节元件,并从基于DCAS9的合成转录激活剂介导的构建体中证明了最大产量。此处展示的方法为植物中代谢途径的异源重建提供了新的见解。
肉质果实形状是影响水果使用和消费者偏好的重要外部品质性状。因此,改变果实形状已成为作物改良的主要目标之一。然而,人们对果实形状调控的潜在机制了解甚少。在本综述中,我们以番茄、黄瓜和桃子为例,总结了肉质果实形状调控遗传基础的最新进展。比较分析表明,OFP-TRM(OVATE 家族蛋白 - TONNEAU1 募集基序)和 IQD(IQ67 结构域)通路可能在调节果实形状方面有所保留,它们主要通过调节肉质果实物种之间的细胞分裂模式。有趣的是,发现 FRUITFULL(FUL1)、CRABS CLAW(CRC)和 1-氨基环丙烷-1-羧酸合酶 2(ACS2)的黄瓜同源物可调节果实伸长。我们还概述了拟南芥和水稻中 OFP-TRM 和 IQD 途径介导的果实形状调控的最新进展,并提出 OFP-TRM 途径和 IQD 途径通过整合植物激素(包括油菜素类固醇、赤霉酸和生长素)和微管组织来协调调节果实形状。此外,还展示了 OFP、TRM 和 IQD 家族成员的功能冗余和分歧。本综述概述了目前关于果实形状调控的知识,并讨论了未来研究中需要解决的可能机制。
1 ProMetTre 癌症研究中心,墨尔本 3205,澳大利亚 2 维多利亚大学健康与生物医学学院,墨尔本 8001,澳大利亚;jack.bolton86@gmail.com(JB);john.price@vu.edu.au(JTP);chau.nguyen@icmp.int(CHN) 3 哈佛医学院贝斯以色列女执事医疗中心放射肿瘤科,波士顿,马萨诸塞州 02215,美国;bjlang617@gmail.com(BJL);scalderw@bidmc.harvard.edu(SKC) 4 库约医学与实验生物学研究所(IMBECU)肿瘤学实验室,国家科学技术研究委员会(CONICET),门多萨 5500,阿根廷;martine.guerrero@iqvia.com 5 西部医院 Dorevitch 病理学系,墨尔本 3011,澳大利亚; chris.dow@dorevitch.com.au 6 墨尔本大学医学系,墨尔本 3052,澳大利亚 7 维多利亚大学健康与体育研究所,墨尔本 8001,澳大利亚 8 维多利亚大学与西部健康学院澳大利亚肌肉骨骼科学研究所 (AIMSS),墨尔本 8001,澳大利亚 9 莫纳什大学生物化学与分子生物学系,克莱顿 3800,澳大利亚 * 通讯地址:jdrake@pmtcr.org;电话:+61-425-031-798 † 上述作者对本文贡献相同。‡ 作者目前所属机构:国际失踪人员委员会科学与技术部,2514 AA,海牙,荷兰。
通过在人类诱导性多能干细胞衍生的心肌细胞 (iPSC-CM) 中进行精确的基因调节并使用可扩展的全光学电生理学平台进行后续表型分析,可以揭示基因-表型关系。近期 CRISPR 衍生的可逆基因抑制或激活技术 (CRISPRi/a) 可以为人类功能基因组学方面的此类努力提供帮助。我们着手表征 CRISPRi 在后分化 iPSC-CM 中的性能,以关键的心脏离子通道基因 KCNH2、KCNJ2 和 GJA1 为目标,并使用全光学工具提供对心脏复极、静息膜电位稳定性和传导特性影响的多参数量化。更有效的 CRISPRi 效应物(例如 Zim3)和优化的病毒递送可使性能得到改善,与使用 CRISPRi iPSC 系相当。当 CRISPRi 部署在非分裂分化心脏细胞中时,确认轻微但具体的表型变化是朝着更全面的临床前心脏毒性测试和未来体内治疗应用迈出的重要一步。关键词:CRISPRi、iPSC-CM、心脏电生理学、离子通道、KCNH2、KCNJ2、GJA1、全光电生理学、光遗传学、光学映射
顺式调控元件编码基因组蓝图,确保基因表达的正确时空模式,这对于适当的发育和对环境的反应必不可少。越来越多的证据表明,基因表达的变化是真核生物表型新颖性的主要来源,包括哺乳动物的疾病和癌症等急性表型。此外,在较长的进化时间尺度上影响顺式调控序列的遗传和表观遗传变异已成为形态分化和局部适应研究中反复出现的主题。在这里,我们讨论了各种顺式调控元件的功能和用于识别各种顺式调控元件的方法,以及它们在植物发育和对环境的反应中的作用。我们重点介绍了利用植物发育和环境反应背后的顺式调控变异进行作物改良的机会。尽管对植物顺式调控机制的全面了解落后于对动物的了解,但我们展示了一些突破性的发现,这些发现深远影响了植物生物学并塑造了对真核生物转录调控的整体理解。