摘要。由于介质不均匀性而导致的波(例如光)的散射在物理学中普遍存在,并且被认为对许多应用有害。波前整形技术是一种强大的工具,可以消除散射并通过非均匀介质聚焦光,这对于光学成像、通信、治疗等至关重要。基于散射矩阵 (SM) 的波前整形在处理线性区域中的动态过程中非常有用。然而,在非线性介质中控制光的这种方法的实现仍然是一个挑战,至今尚未被探索。我们报告了一种确定具有二阶非线性的非线性散射介质的 SM 的方法。我们通过实验证明了其在波前控制中的可行性,并通过强散射二次介质实现了非线性信号的聚焦。此外,我们表明该 SM 的统计特性仍然遵循随机矩阵理论。非线性散射介质的散射矩阵方法为非线性信号恢复、非线性成像、微观物体跟踪和复杂环境量子信息处理开辟了道路。
基频为 60 Hz、均方根值为 0.158 V 的失真波形。这些精确失真的波形包含第 3、5、7、9、11、23、31 和 39 次谐波。选择这些谐波是出于以下两个方面的考虑:(a) 使用电力系统中常见且在电能质量文献标准中引用的谐波;(b) 保持谐波相对于频谱分析本底噪声的信噪比足够高,以使相位分辨率优于 0.001 。相对于基波,每个谐波的幅度为 10%,相位为 90 。首先使用 Digitizer1 测量包含基波和上述谐波之一的波形,然后测量包含基波和上述所有谐波的波形(图 2)。两组测量结果之间的差异不超过 0.001 。
氮化硅(Si 3 N 4)是非线性光学的不断成熟的集成平台,但主要考虑三阶[χ(3)]非线性相互作用。最近,二阶[χ(2)]非线性通过光钙效应引入Si 3 N 4中,从而导致准时铭文 - 匹配χ(2)光栅。然而,光藻素效应在微孔子中的全部潜力在很大程度上尚未探索级联效应。在这里,我们报告了正常分散体Si 3 N 4微孔子中的χ(2)和χ(3)非线性效应。我们认为,光诱导的χ(2)光栅还为总频率生成过程提供了相匹配,从而实现了主梳的启动和连续切换。此外,双重谐振泵和第二谐波场允许有效的第三谐波生成,其中鉴定出二次光学写入χ(2)光栅。最后,我们到达从总和 - 耦合初级梳子中演变的宽带微重尸状态。这些结果扩大了微孔子中级联效应的范围。
关键电离分数的概念对于高谐波生成至关重要,因为它决定了最大的驱动激光强度,同时保留了谐波的相位匹配。在这项工作中,我们揭示了第二个非绝热的临界电离馏分,这基本上扩展了相匹配的谐波能量,这是由于气体等离子体中强激光场的强烈重塑而产生的。我们通过针对广泛的激光条件进行实验和理论之间的系统比较来验证这种情况。尤其是,高谐波光谱与激光强度的性质经历了三种独特的场景:(i)与单原子截止的巧合,(ii)强光谱延伸和(iii)光谱能量饱和。我们提出了一个分析模型,该模型可以预测光谱扩展,并揭示了非绝热效应对中红外激光器的重要性。这些发现对于在光谱和成像中应用的高亮度软X射线源的开发很重要。
波状模式在生命体中普遍存在,包括肠道蠕动[1]、蠕虫类生物的波动性运动[2]或心动周期[3]等日常现象,以及纤毛和鞭毛跳动[4]、基因振荡[5]或反应扩散模式[6]等微观波。这些模式的功能各不相同,但值得注意的是,它们往往与运输或运动直接相关。每个系统都有不同的振荡特征,例如体形[7]或分子浓度[8],但所有系统都由一组有限的波参数所支配——波长、振幅和频率。此外,参数选择受到物理或生物约束的限制。在给定约束的情况下,生命系统会使用哪些策略来实现波的功能?环境变化对生命系统提出了挑战,要求它们在有限的波参数下改变波的动力学,同时还要保持在波的约束范围内。例如,线虫秀丽隐杆线虫根据环境的粘弹性,通过调节其波浪形身体的波动波长、振幅和频率来改变其运动方式[9]。然而,这种适应性与波的能量成本的变化相伴而生,而这往往是生命的最大限制[10,11]。虽然正弦波形提供的可调整参数很少,但一些生命系统却使用波的叠加。例如人类肠道的蠕动收缩[12]或人类精子的鞭毛跳动[13]。多种波的叠加可以调节总波形,从而增加
在[1,7]中的时间依赖性通过截短的傅立叶膨胀来处理,这使我们能够为每个频率获得单独的线性系统。在那里,提出了有效的求解线性系统的预处理方法,其中预核心是具有区块 - diagonal的,并且是较低的三角形形式。在[2]中使用了完整的两二个块结构的预处理,进一步称为PRESB,在续集中定义。[3]中的研究提供了不同结构的预处理(遮挡型,块 - 三角形和PRESB形式)之间的比较。比较是根据相应预处理矩阵及其数值性能的光谱正确的。数值实验表明,相对于正则化参数的频率范围,问题大小和值,PERB形式的预处理更加健壮。可以在[10]中找到对这些预调节器和一些修改形式的信息。[9]研究中的工作又是块形式形式的另一个预处理,并分析了双重预处理,适合于离散状态的向量形式。在[8]中考虑了(2)的非线性形式,其中为线性化问题提出了完整的两乘两块形式的预处理,可以将其分解和解决,以块 - 二进制预处理的成本,并且相对于问题大小和测试频率的范围是可靠的。
光涡流具有通过利用轨道角动量的额外自由度来增加数据容量的巨大潜力。另一方面,各向异性2D材料是对未来综合偏振敏感光子和光电设备的有希望的构建块。在这里,用在超薄2d仙境植物燃料上构图的叉全息图证明了高度各向异性的第三谐波光学涡流束的产生。表明,各向异性非线性涡流束的产生可以独立于叉形方向相对于晶体学方向而实现。此外,2D叉全息图旨在产生具有不同各向异性反应的不同拓扑电荷的多个光学涡旋。这些结果铺平了迈向基于2D材料的各向异性非线性光学设备,用于光子整合电路,光学通信和光学信息处理。
高谐波产生(HHG)已引起了对材料特性和超快动态的探索的极大关注。然而,缺乏对HHG和其他准颗粒(例如声子)之间耦合的考虑,一直阻碍对HHG中多体相互作用的理解。在这里,我们通过研究非绝热(NA)相干偶联的HHG来揭示了Quasiparticle耦合的强场动力学中多体电子载体机制。相干的声子被揭示出通过声子变形效应引起的绝热带调制以及多个山谷中光载体的Na和非平衡分布有效地影响HHG。绝热和NA机制通过影响声子周期和HHG强度振荡的相位延迟而离开指纹,这两者在实验上都是可测量的。对这些数量的研究可以直接探测材料中电子相互作用。
如图 4b 所示,所提出的结构可以在 3.58 GHz 和 4.75 GHz 处创建两个传输零点。这些传输零点可以在 WPD 设计中抑制更多谐波。所提出的谐振器主要尺寸如下:d4 = 2.4、d5 = 1.4、d6 = 0.5、d7 = 1.2、d8 = 0.9、d9 = 0.1、d10 = 2.8、d11 = 0.11、W3 = 0.1、W5 = 2.1、W6 = 0.1、W7 = 0.1、W8 = 2.6、S3 = 0.1、S4 = 0.3、S5 = 0.2、S6 = 0.2、S7 = 0.2(单位均为毫米)。表 2 列出了所提出的主谐振器的 LC 等效模型的计算值。在 (13) 中计算了设计的主谐振器的 TF。