博士后研究人员首席研究员:Jeffrey Rathmell博士2023-2024•针对目标的代谢组学和重型同位素标记的LC-MS/MS方法生成并优化了13 C标记的葡萄糖和谷氨酰胺在Shimadzu Hplc和Sciex Qtrap 6500。•Rathmell实验室中质谱相关的研究人员。•教授并指导了研究助理样品制备,液相色谱和质谱法,以接管离开后的Rathmell Lab的代谢组学研究。•实验室的指导本科生和研究生。•提交了DOD概念奖,以研究肾细胞癌肿瘤微环境中的免疫代谢和串扰,提出了一种多词和空间代谢方法,以识别基于代谢的肾细胞癌治疗靶标。•在Rathmell实验室和外部合作者中从事各种协作项目。亚利桑那大学,亚利桑那州图森大学研究生研究助理2018-2023论文:识别后翻译后修改的监管机制,Lactoyllys首席研究员:James Galligan博士亚利桑那大学,亚利桑那州图森大学研究生研究助理2018-2023论文:识别后翻译后修改的监管机制,Lactoyllys首席研究员:James Galligan博士
巨噬细胞中线粒体生物能的受损可能会驱动高炎性细胞因子反应1-6,但是是否也可能是由遗传的mtDNA突变引起的。在这里,我们使用一种多摩变方法来解决这个问题,该方法将超分辨率成像和代谢分析整合到来自丙氨酸7的线粒体trNA中异质质突变(M.5019a> g)的线粒体疾病的小鼠模型中的巨噬细胞。这些M.5019a> G巨噬细胞在呼吸链复合物中表现出缺陷,并且由于中骨内部翻译减少而导致氧化磷酸化(OXPHOS)。以适应这种代谢应激,线粒体融合,还原性谷氨酰胺代谢和有氧糖酵解均增加。在炎症激活后,I型干扰素(IFN-I)释放得到增强,而在M.5019a> G巨噬细胞中限制了促炎性细胞因子和黄磷脂的产生。最后,使用M.5019a> G小鼠的体内内毒素性模型显示IFN-I水平和疾病行为升高。总而言之,我们的研究确定了响应致病性mtDNA突变的先天免疫信号传导的意外失衡,对MTDNA疾病患者的病理发展具有重要意义。8。
精神分裂症是一种精神病,其特征是一种深刻的精神疾病,会损害个人在社会和认知领域中发挥作用的能力。被诊断患有精神分裂症的人表现出精神病理学症状,这些症状被归类为阳性,阴性和认知。根据一些估计,近98%的精神分裂症患者患有认知缺陷,并且低于其预期的认知能力,这取决于他们的前诊所和父母的教育成就。精神分裂症会影响全球约2400万个人,这转化为0.32%的患病率,即300人中有1人。在此期间,成年人中病情的患病率为222个人中的0.45%或1个。精神分裂症的遗传力被广泛认为是显着的,范围从60%到90%。因此,确定特定的风险基因对于理解该疾病的基本原因和生理机制至关重要。精神分裂症的病理生理学涉及各种神经递质及其途径的失调。各种环境因素和遗传也与之相关。多巴胺和其他与之相关的神经递质(如5-羟色胺和谷氨酰胺)一直是精神分裂症的主要药物靶标。本综述的目的是对精神分裂症的病因,病理生理机制和表现形式提供全面的理解。总体而言,仍然没有足够的证据证明精神分裂症发病机理的根本原因。尽管如此,重要的是要认识到精神分裂症的未知原因和未知原因。关键词:精神分裂症;精神障碍;精神病;精神分裂症的起源
摘要 人体内寄生着多种对生理功能至关重要的微生物,这些微生物的失衡可导致肠道菌群失调,在胃肠道中尤为明显。在生命的最初几年,儿童的肠道微生物群会发生重要变化。肥胖症和糖尿病等慢性疾病会影响成人和儿童,并且可能与菌群失调有关。本次综合文献综述在 BVS、Medline 和 Lilacs 等书目存储库中进行,目的是找出与患有慢性疾病的儿童肠道菌群失调相关的研究,重点关注其患病率和主要影响。研究结果表明,菌群失调与慢性病儿童的胃肠道症状相关,诊断基于临床症状。吸收不良、滥用泻药和饮食不当等因素会导致微生物群失衡。最佳治疗从改变饮食开始,例如补充谷氨酰胺,并可能涉及使用特定的益生菌和抗生素,强调了综合方法管理肠道健康和预防慢性疾病的重要性。因此,结论是,所审查的研究表明,肠道微生物群在多种儿科疾病(如 IBD、T1D、CD、呼吸系统和肝脏疾病、功能性便秘和 CF)的发展和进展中起着至关重要的作用,凸显了肠道菌群失调的重要性和益生菌的治疗潜力,此外还强调需要进一步研究以确定有效的治疗和饮食策略来改善儿童健康。关键词:肠道菌群失调;泻药;微生物组;幼稚。摘要 人体内寄生着多种对生理功能至关重要的微生物,这些微生物的失衡可导致肠道菌群失调,在胃肠道中尤为明显。在生命的最初几年,儿童的肠道微生物群会发生重要变化。肥胖症和糖尿病等慢性疾病会影响成人和儿童,并且可能与菌群失调有关。本次综合文献综述是在 VHL、Medline 和 Lilacs 等书目存储库中进行的,目的是找出与儿童肠道菌群失调与慢性疾病相关的研究,重点关注其患病率和主要影响。研究结果表明,菌群失调与慢性病儿童的胃肠道症状相关,诊断主要基于临床症状。吸收不良、滥用泻药和饮食不当等因素会导致微生物群失衡。最佳治疗始于饮食改变,例如补充谷氨酰胺,并可能涉及使用特定的益生菌和抗生素,强调了采用综合方法管理肠道健康和预防慢性疾病的重要性。因此,结论是,所审查的研究表明,肠道微生物群在几种儿科疾病(如 IBD、T1D、CD、呼吸系统和肝脏疾病、功能性便秘和 CF)的发展和进展中起着至关重要的作用,突出了肠道菌群失调的重要性和益生菌的治疗潜力,此外还强调需要进行更多研究以确定有效的治疗和饮食策略来改善儿童健康。关键词:肠道菌群失调;泻药;微生物群;儿童。
Machado-Joseph疾病(MJD)是一种毁灭性且无法治愈的神经退行性疾病,其特征是进行性共济失调,难以说话和吞咽。因此,受影响的个体最终成为轮椅依赖,需要持续的护理,并面临预期寿命缩短。MJD的单基因原因是ATXN3基因内的三链肽(CAG)重复区域的膨胀,这导致产生的ataxin-3蛋白内聚谷氨酰胺(PolyQ)膨胀。虽然可以很好地确定ataxin-3蛋白作为去泛素化(DUB)酶的作用,因此与蛋白质抗体有关,但仍然存在有关polyq膨胀在ataxin-3对其DUB功能的影响的问题。在这里,我们回顾了当前的Ataxin-3的DUB功能,其DUB目标以及PolyQ扩展对Ataxin-3的DUB功能的影响的知识。我们还考虑了ataxin-3的配音功能的潜在神经保护作用,以及亚Xaxin-3作为基因转录的配音酶和调节剂的相交。ataxin-3是MJD中的主要致病蛋白,似乎也参与了癌症。由于异常去泛素化与神经变性和癌症既有联系,因此对Ataxin-3的DUB功能的全面理解对于在这些复杂条件下阐明潜在的治疗靶标很重要。在这篇综述中,我们旨在将Ataxin-3的知识巩固为DUB和揭幕区域,以进行未来的研究,以帮助对Ataxin-3的DUB功能进行治疗,以治疗MJD和其他疾病。
随机皮瓣受长宽比限制,影响其临床应用。本研究旨在综述人参皂苷Rb1对随机皮瓣成活的影响,并从代谢组学方法分析其作用机制。将Sprague-Dawley大鼠分为对照组、缺血再灌注(I/R)组和人参皂苷Rb1组。采集大鼠血清和中部皮瓣组织进行1H-NMR波谱检测和计算机模式识别分析。术后10 d,Rb1组背部皮瓣成活率(61.06±3.71)%明显高于I/R组(50.46±1.41)%。术后24 h,1H-NMR波谱分析显示I/R组血清中脂质含量增加。与I/R组血清相比,Rb1组血清谷氨酸、肌酸、富马酸含量明显升高,乳酸、胆碱、磷酸胆碱、N-乙酰糖蛋白、尿囊素含量降低。皮瓣组织中谷氨酰胺、柠檬酸、牛磺酸、富马酸的ATP/ADP/AMP含量升高,乳酸、乙酸、乙酰乙酸的ATP/ADP/AMP含量明显降低。提示人参皂苷Rb1可能具有提高背部随意皮瓣成活率和保护作用。
螺旋藻是蓝色绿藻。它含有18种氨基酸,谷氨酰胺,甘氨酸,组氨酸,赖氨酸,蛋氨酸,肌酸,肌酸,半胱氨酸,苯丙氨酸,甲基丙氨酸,丝氨酸,脯氨酸,色氨酸,天质素,吡啶酸和丙酮酸和诸如生物酸,硫酸酸性,硫酸酸性,纤维化酸脂蛋白,纤维化酸酸盐酸盐,inikical酸酸盐酸盐,吡啶酸维生素和维生素β-胡萝卜素和维生素B12。近年来,已经在粒土培养中进行了尝试,以用植物提取物加固桑树叶,以提高桑is叶的质量和蚕效率,从而提高茧的生产和丝质质量。Bombyx Mori的幼虫和茧特征受植物提取物Xanthium indimum的影响(Pardeshi and Bajad,2014年)。在幼虫和壳重量的cocoon cocoon的商业特征随后对叶子的叶子和壳的商业特征进行口头效果,并补充了cyanobacteria and cyanobacteria(Kumar and and.kumar et and。)。Spirulina supplemented mulberry leaf found to be efficient in increasing larval and cocoon characters when orally fed to Bombyx mori (Sangamithirai et al.,2014).The growth rate of silkworm larvae and cocoon characters of silkworm Bombyx mori enhanced by Spirulina as it exhibits the presence of certain growth stimulant activity has been observed (Kumar and Balasubramanian, 2014年)。目前的研究是研究螺旋藻对茧定量参数的影响,即茧的重量,壳重量,壳百分比。
演讲tm:揭示糖基化和免疫之间的甜蜜真理,每个细胞的每个细胞都被称为聚糖的简单且复杂的碳水化合物覆盖(图1A),其中大多数通过称为糖基化的过程与蛋白质或脂质绑定。这些细胞表面蛋白的巨大结构多样性,进化和丰度取决于细胞类型和状态,因此被认为是反映不同细胞特征的“细胞特征”(1,2)。已知糖基化与免疫系统的不同方面有关,例如T细胞生物学,对于T细胞受体(TCR)的激活和功能至关重要。 TCR是T细胞表面上的蛋白质,识别并结合了异物物质,例如病原体或毒素,在激活T细胞中起关键作用。 糖基化可以通过改变其构象和稳定性以及调节其与其他蛋白质的相互作用来影响TCR的激活和功能(3)。 已知 t细胞代谢受聚糖调节。 经历克隆膨胀或增殖的 T细胞需要改变代谢,以承受通过有氧糖酵解和谷氨酰胺溶解的核苷酸,氨基酸和脂质合成的生物能量需求的增加(4)。 t细胞活化还上调了葡萄糖代谢的一个成分的己糖胺途径,以增加核苷酸糖供体底物UDP-GlcNAC。 此途径是N-糖基化,O-glcnacylation和糖氨基氨基聚糖的产生所必需的,这是功能性T细胞的要求(5)。糖基化与免疫系统的不同方面有关,例如T细胞生物学,对于T细胞受体(TCR)的激活和功能至关重要。TCR是T细胞表面上的蛋白质,识别并结合了异物物质,例如病原体或毒素,在激活T细胞中起关键作用。糖基化可以通过改变其构象和稳定性以及调节其与其他蛋白质的相互作用来影响TCR的激活和功能(3)。t细胞代谢受聚糖调节。T细胞需要改变代谢,以承受通过有氧糖酵解和谷氨酰胺溶解的核苷酸,氨基酸和脂质合成的生物能量需求的增加(4)。t细胞活化还上调了葡萄糖代谢的一个成分的己糖胺途径,以增加核苷酸糖供体底物UDP-GlcNAC。此途径是N-糖基化,O-glcnacylation和糖氨基氨基聚糖的产生所必需的,这是功能性T细胞的要求(5)。糖基化也是可能影响蛋白质的免疫原性的一个因素,该因素受到多种因素的影响,包括其结构和抗原决定因素的存在。将糖添加到蛋白质中时,可能会改变蛋白质的形状和电荷,从而可能影响免疫系统识别为异物。这可能会影响免疫系统对疫苗产生抗体和记忆细胞产生抗体和记忆细胞的能力,从而影响其有效性。T细胞表面蛋白糖基化的变化也会影响细胞因子的产生,信号分子有助于协调免疫反应(6)。免疫系统必须能够区分自我和非自我,以便正常运行。此过程失败会导致自身免疫性疾病的发展。这可能导致一系列症状,具体取决于被攻击的组织。自我抗原的糖基化模式的变化可以改变其抗原决定因素,这可能会导致自身免疫性,如鼠模型中所观察到的那样(7,8)。
肿瘤细胞的能量代谢被认为是癌症的标志之一,因为它不同于正常细胞,主要包括有氧糖酵解、脂肪酸氧化和谷氨酰胺分解。大约一百年前,瓦尔堡观察到癌细胞即使在常氧条件下也喜欢有氧糖酵解,这有利于它们的高增殖率。驱动这一现象的关键酶是乳酸脱氢酶 (LDH),本综述描述了与这种酶相关的预后和治疗机会,重点关注治疗策略和预期寿命有限的肿瘤(即胰腺癌和胸腔癌)。胰腺癌组织中 LDH-A 的表达水平与临床病理特征相关:LDH-A 在胰腺癌发生过程中过表达,在更具侵袭性的肿瘤中表现出明显更高的表达。同样,LDH 水平是腺癌或鳞状细胞肺癌患者以及恶性胸膜间皮瘤患者预后不良的标志。此外,血清 LDH 水平可能在这些疾病的临床管理中发挥关键作用,因为它们与肿瘤负荷引起的组织损伤有关。最后,我们讨论了以 LDH 为治疗策略的有希望的结果,报告了最近的临床前和转化研究,支持将 LDH 抑制剂与当前/新型化疗药物联合使用,这些化疗药物可以协同靶向肿瘤中存在的含氧细胞。
抽象糖尿病(DM)是领先的非传染代谢疾病之一。随着时间的流逝,这可能导致严重并发症的发展。谷氨酰胺果糖6-磷酸氨基转移酶(GFAT)是第一个且限制的酶,在调节己糖胺生物合成途径(HBP)中起着重要作用。在高血糖期间,进入细胞的多余葡萄糖被这种GFAT酶转移到HBP中。最近的研究表明,GFAT的过表达与胰岛素抵抗和糖尿病并发症有关,并且主要在糖尿病患者中看到。使用各种来源进行了广泛的文献调查,以确定GFAT酶的复杂作用及其参与各种蛋白质和转录因子的修饰,从而有助于糖尿病并发症的发展。高血糖期间GFAT的过表达增加了通过HBP的通量,从而导致胰岛素抵抗,以及各种血管并发症,例如肾病,神经病,视网膜病变,伤口延迟伤口愈合和心血管并发症。抑制GFAT是一种潜在的治疗策略,以抵消己胺途径诱导的胰岛素抵抗并减轻糖尿病的血管并发症。GFAT在糖尿病并发症中的多面作用强调了其作为糖尿病管理未来进步的治疗靶标的意义。关键词:GFAT,糖尿病,六糖途径,胰岛素抵抗,糖尿病并发症