我们计划召开最后一次会议,讨论弦理论的未来愿景。为了激发讨论,我们要求最近的弦理论会议和今年的 KITP 计划的发言人和组织者提交可能在未来十年得到解答的问题。我们收到了以下 100 个问题,其中一些带有提示,所有问题都非常有趣。我们鼓励您就这些问题提出意见和问题,并在我们的会议上分享。我们也欢迎您提出可能在未来十年得到解答的新科学问题。我们希望这些问题将有助于激发会议上的讨论以及未来的研究。我们的计划是每个人发言 15 分钟,然后就任何主题开放您的意见和问题。您也可以考虑提前向我们提交您的意见和问题。虽然我们不能保证有足够的时间给每个人,但我们会尝试从那些提前联系我们的人开始。我们期待一场有趣的会议!此致 大栗宏和安迪·斯特罗明格
我们提出了一个精确可解的玩具模型,用于 N 个量子比特的置换不变图状态的连续耗散动力学。此类状态局部等效于 N 个量子比特的 Greenberger-Horne-Zeilinger (GHZ) 状态,后者是许多量子信息处理装置中的基本资源。我们重点研究由 Lindblad 主方程控制的状态的时间演化,该方程具有三个标准单量子比特跳跃算子,哈密顿量部分设置为零。通过推导出在 Pauli 基中随时展开的可观测量的期望值的解析表达式,我们分析了非平凡的中间时间动力学。使用基于矩阵乘积算子的数值求解器,我们模拟了最多 64 个量子比特的系统的时间演化,并验证了数值上与解析结果的精确一致性。我们发现,系统二分算子空间纠缠熵的演化呈现出一个平台期,其持续时间随着量子比特的数量呈对数增加,而所有泡利算子积的期望值最多在常数时间内衰减。
辐射分解驱动的金纳米结构演变——通过尺度桥接原位液相透射电子显微镜和 X 射线衍射进行模型验证 Birk Fritsch*、Tobias Zech、Mark Bruns、Andreas Körner、Saba Khadivianazar、Mingjian Wu、Neda Zargar Talebi、Sannakaisa Virtanen、Tobias Unruh、Michael PM Jank、Erdmann Spiecker、Andreas Hutzler* B. Fritsch、S. Khadivianazar、N. Zargar Talebi、Dr. MPM Jank,Andreas Hutzler 埃尔朗根-纽伦堡弗里德里希亚历山大大学 电气、电子和通信工程系 电子设备 (LEB) Cauerstraße 6, 91058 Erlangen,德国 电子邮件:birk.fritsch@fau.de B. Fritsch,博士M. Wu,E。Spiecker教授弗里德里希 - 艾克萨德·纳克斯蒂特·恩兰根 - 尼尔伯格材料科学与工程研究所微型和纳米结构研究所(IMN)和纳米分析和电子显微镜和电子显微镜(cenem)Cauerstraße3,cauerstraße3,91058 Erlangen,zech T ERLANGEN-Nürnberg物理学部凝结物理学与结构性物理学研究所(ICSP),微观和纳米结构研究所(IMN),纳米分析和电子显微镜(Cenem)3,91058 Erlangernany,caunany,staudtstraßeBrun,纳米分析和电子显微镜(CENEM) ,S。Virtanen Friedrich-Alexander-Universität教授Erlangen-Nürnberg材料科学与工程学系科学与腐蚀(LKO) Martensstraße 7, 91058 埃尔朗根,德国 A. Körner,博士A. Hutzler,Forschungszentrum Jülich GmbH,亥姆霍兹埃尔朗根-纽伦堡可再生能源研究所(IEK-11),Cauerstraße 1,91058 Erlangen,德国电子邮件:a.hutzler@fz-juelich.de 博士MPM Jank 弗劳恩霍夫集成系统与设备技术研究所 IISB Schottkystraße 10, 91058 Erlangen, 德国 关键词:动力学建模、辐解、金纳米粒子、粒子生长、氧化蚀刻、临界半径、液体细胞透射电子显微镜
大脑由可电刺激的神经元网络组成,这些神经元网络受电压门控离子通道活动的调节。然而,进一步描绘大脑的分子组成,不会揭示任何让人联想到感觉、知觉或意识体验的东西。在古典物理学中,解决心智-大脑问题是一项艰巨的任务,因为没有物理机制能够解释大脑如何产生不可观察的内在心理世界意识体验,以及这些意识体验如何反过来引导大脑的底层过程朝着期望的行为发展。然而,这一挫折并不能证明意识是非物理的。现代量子物理学证实了希尔伯特空间中两种物理实体之间的相互作用:不可观察的量子态,即描述物理世界中存在的矢量,以及量子可观测量,即描述可在量子测量中观察到的算子。量子不通过定理进一步为研究量子大脑动力学提供了一个框架,该框架必须由物理上可接受的汉密尔顿量控制。意识中包含了不可观察的量子信息,这些信息整合在量子大脑状态中,解释了意识体验内在隐私的起源,并将意识过程的动态时间尺度重新审视为神经生物分子的皮秒构象转变。可观察的大脑是一个客观结构,由经典信息比特创建,这些信息比特受 Holevo 定理约束,并通过测量量子大脑可观察量获得。因此,量子信息理论澄清了不可观察的思维和可观察的大脑之间的区别,并为意识研究提供了坚实的物理基础。
最近,LHCB测量结果确认了X(4140)状态,具有高统计数据1,2,质量为4146。5±4。5 +4。6-2。8 MEV和宽度83±21 +21 - 14 MEV,比以前的实验测量3大得多,并且确定量子数为J P C = 1 ++。关于X(4140)4,5的结构有许多不同的建议,尤其是因为宽度的差异很大。的确,在恢复更奇特的作业之前,耗尽观察到的状态的Q描述可能是自然而必要的。在这项工作中,通过求解相对论/非相对论schr odinger方程来掌握梅森波的功能,我们调查了x(4140)作为3 p 0模型中charmon态的衰减属性,并提供有关搜索X(4140)的更多信息,以提取X(4140),以提取更多精确的信息。
间充质干细胞(MSC)具有较高的外体释放能力,具有用作药物载体系统的潜力。外泌体还有效地证明了它们作为药物输送系统进入细胞的能力。这项研究旨在确定宫颈癌细胞(HELA)药物递送过程中MSCDERIVES外泌体影响的机制。在这项研究中,从出生时脐带(UCMSC)中分离出间充质干细胞。孤立的UCMSC以CD34,CD90,CD105和CD34标记为特征。使用电子显微镜检查外泌体的大小和形态。通过电穿孔将释放的外泌体(Exopac)加载释放的外泌体(Exopac),研究了在HELA癌症治疗中使用紫杉醇(Exopac)的潜力。确定exopac以较低的浓度和较短的时间影响了HeLa细胞。exopac抑制了SMAD3和SLUG蛋白,这些蛋白在细胞转移和血管生成中有效。同时,PAC显示了其对凋亡途径中蛋白质的影响,并诱导了BAX/BCL2比。在这项研究中,表明在上皮层层次过渡机制中有效的SMAD3和SLUG转录因子可以被外泌体药物载体抑制。已经证明,UCMSC可以用作药物输送系统,通过阻止细胞中的SMAD3和SLUG信号通路来抑制细胞侵袭。这项研究得到了Tubitak 1002的支持,项目编号为120S682。