摘要。属性模型方法 (PMM) 与设计广泛的技术系统相关,本文将其应用于 ARP4754A/ED79A 框架内的直升机功能开发过程。在简要介绍该方法之后,介绍了案例研究:“收起和伸展机载起落架系统”。然后,通过案例研究中的示例说明了 PMM 开发过程的每个阶段:(1) 对顶层需求规范进行建模,(2) 通过证明和模拟验证需求规范,(3) 对架构设计进行建模,将顶层需求细化为对功能有贡献的不同子系统指定的需求,并对终端子系统详细设计进行建模 (4) 通过证明或模拟验证对贡献子系统指定的需求,(5) 通过模拟验证设计模型,最后 (6-8) 根据开发过程中积累的所有验证和验证场景,通过测试验证物理实现。最后,总结了经验教训和行业观点,强调了 PMM 是一种适应系统工程面临的挑战的方法,因为开发流程全球化,并展示了 PMM 如何提供强大的概念框架来支持全球化设计组织内的数字连续性。支持建模、仿真、验证和测试生成活动
摘要:起落架是飞机的重要组成部分。然而,起落架的部件在其使用寿命内容易退化,这可能导致起飞和降落时出现摆振效应。为了减少意外航班中断并提高飞机的可用性,本研究研究了预测性维护 (PdM) 技术。本文介绍了一个案例研究,该研究基于当前在役飞机的预测和健康管理 (PHM) 框架实施剩余使用寿命 (RUL) 的健康评估和预测工作流程,这可能对机队运营商和飞机维护产生重大影响。机器学习用于使用数据驱动方法开发起落架的健康指标 (HI),而时间序列分析 (TSA) 用于预测其退化。使用来自在役飞机的大量真实传感器数据评估退化模型。最后,概述了为下一代飞机实施内置 PHM 系统的挑战。
摘要:本文提出了一种基于操作载荷监测 (OLM) 系统记录的垂直着陆力对主起落架 (MLG) 连接框架疲劳进行评估的方法。特别是,分析了不同着陆阶段以及地面操作和 MLG 框架疲劳磨损的影响。开发的 OLM 系统的主要功能是对 Su-22UM3K 飞机主起落架节点结构因标准着陆和触地复飞 (T&G) 着陆而产生的疲劳进行单独评估。此外,该系统还允许评估着陆期间主起落架节点结构中的应力累积并允许检测硬着陆。开发的系统还实现了确定选定的飞行阶段、对应变计传感器在标准全停着陆和滑行期间记录的结构不同类型的负载循环进行分类。基于这些功能,可以监测和比较飞机之间的着陆疲劳磨损当量以及给定飞机所有航班的着陆疲劳磨损,这些可以纳入机队管理范例,以实现飞机的最佳维护。本文详细描述了用于起落架节点疲劳评估的系统和算法,并提供了和讨论了在六架飞机的机队 3 年系统运行期间获得的结果。
柯林斯航空航天公司一直在为国防部设计未来军用飞机的起落架。该项目和报告重点关注前起落架阻力支架组件的设计、分析和重新设计。起落架被视为飞机上的主要结构部件之一。虽然起落架可能只占飞机总重量的一小部分,但它承受着巨大的负荷,并且在起飞、降落和地面操作期间必须承受高应力。起落架可能承受拉伸、压缩、扭转、剪切和弯曲。在起落架的设计过程中,必须考虑和分析所有这些因素。起落架设计极具迭代性,正如本报告所示,在最终设计投入制造之前,需要对单个组件以及整个组件进行多次修改。阻力支架对于组件来说至关重要,这绝对适用于起落架。本报告将介绍设计和重新设计阻力支架组件所需的步骤,重点介绍主要部件,例如上部和下部阻力支架、拨动杆、连杆和主轴销。还重点讨论了这些部件的实际结构分析,因为这可能是设计阶段最关键的方面。利用 FEA 分析部件以应用它们在操作过程中将看到的实际负载。FEA 结果可帮助应力分析师发现高应力位置以及弯曲和挠度水平。基于这些结果,可以进行有效的重新设计。请注意,由于这是一个军事计划,因此必须省略所有专有/技术数据才能使用。这意味着无法显示太多实际负载、尺寸或计算。这也包括 CAD 模型中的任何识别特征。因此,所有 CAD 模型都将被简化。已提供尽可能多的细节来展示可靠的设计概念和流程,而不会侵犯柯林斯航空航天技术数据政策。致谢:我要感谢柯林斯航空航天公司允许我将我的工作成果用于我的高级设计项目。我还要感谢我的同事和导师对这个项目的帮助以及我从他们那里获得的所有工程知识。Paul Wang 是我在柯林斯工作期间最优秀的导师。我从他那里学到的所有应对压力的技术技能将贯穿我整个职业生涯。
本硕士论文由 UNF Digital Commons 的学生奖学金免费提供给您,供您开放访问。它已被 UNF Digital Commons 的授权管理员接受纳入 UNF 研究生论文和学位论文。有关更多信息,请联系数字项目。© 2019 保留所有权利
起落架是飞机的关键子系统之一。设计重量最轻、体积最小、性能高、寿命更长、生命周期成本更低的起落架给起落架设计师和从业者带来了许多挑战。此外,在满足所有法规和安全要求的同时,缩短起落架设计和开发周期也至关重要。多年来,已经开发出许多技术来应对起落架设计和开发中的这些挑战。本文介绍了起落架设计和开发的各个阶段、当前的技术前景以及这些技术如何帮助我们应对起落架开发中涉及的挑战以及它们未来将如何发展。
起落架是飞机的关键子系统之一。设计重量最轻、体积最小、性能高、寿命更长、生命周期成本更低的起落架给起落架设计师和从业者带来了许多挑战。此外,在满足所有法规和安全要求的同时,缩短起落架设计和开发周期也至关重要。多年来,已经开发出许多技术来应对起落架设计和开发中的这些挑战。本文介绍了起落架设计和开发的各个阶段、当前的技术前景以及这些技术如何帮助我们应对起落架开发中涉及的挑战以及它们未来将如何发展。
综合车辆健康管理 (IVHM) 越来越多地被各种飞机采用,包括系统和结构。由于飞机起落架系统的重要性仅次于推进系统,因此本研究选择飞机起落架系统作为研究对象。本文介绍了一种用于典型运输飞机起落架系统的综合车辆健康管理 (IVHM) 解决方案。这种端到端解决方案同时考虑了飞机 OEM 和客机。系统架构详细说明了各种组件,如跟踪和追踪、结构架构、逻辑架构、数据采集、传感器、数据处理、状态检测、健康评估和预测。解决方案通过起落架收起机制的典型用例进行演示。Infosys 一直积极致力于这一领域,将其在机械产品开发、传感器技术、通信、数据分析和软件系统工程方面的最佳能力融为一体。健康监测领域正在不断开发许多先进技术,这使其与多个行业领域息息相关。
本文提供了有关起落架结构健康监测 (SHM) 系统开发的信息,该系统通过直接负载测量以及支柱维修检测算法提供预测/诊断 HUMS 功能。该系统通过将新传感器集成到起落架组件中来提供先进的监测技术。直接负载测量方法是当前跟踪机身起落架系统和机身支撑结构疲劳损伤方法的范式转变,这些方法依赖于 SHM 设备以各种采样率在机上记录的飞机参数数据收集。起落架 SHM 提供直接负载测量、重量/平衡计算以及对起落架组件执行基于条件的维护 (CBM) 的能力。NAVAIR 与 ES3 签订合同,通过小型企业创新研究 (SBIR) 计划(通过 N121-043 主题的第二阶段奖励)支持起落架 SHM 的开发。提议的解决方案将直接转移到其他海军、军用和商用飞机平台。本文将讨论 HUMS 和 CBM 领域的以下主题:(1) 用于直接负载测量的先进起落架传感器;(2) 将直接负载监测数据融合到疲劳寿命评估中;(3) 利用支柱维修检测算法实现飞机维护的范式转变;(4) 系统验证和确认;(5) 安全和维护效益。频谱开发和使用监测领域的先前工作通常侧重于飞机结构,将假设转化为起落架组件,而无需任何直接测量。使用监测的好处也可以用于起落架。直接载荷测量能够延长使用寿命、根据实际载荷移除部件、提高安全性、增加飞机可用性,并将 CBM 数据纳入维护实践,从而节省维护成本。本文通过对在高技术就绪水平 (TRL) 下适用于严酷起落架环境的传感器进行小型化,推动了最新技术的发展。
摘要:起落架是飞机的重要结构单元,它确保飞机在地面上安全起飞和降落。根据飞机的类型和大小,起落架有多种布置方式。最常见的类型是三轮式布置,由一个前起落架单元和两个主起落架单元组成。即使在正常着陆操作期间,重载荷(等于飞机的重量)也要由起落架吸收。反过来,要提供接头,使得重集中载荷首先由机身承受,然后分散到周围区域。通常,重集中载荷通过凸耳接头承受。因此,在飞机结构的研发中,设计一种在静态和疲劳载荷条件下防止失效的凸耳接头非常重要。 关键词:起落架类型和布置。