学士:首尔国立大学电子工程学士 (1996 - 2000) 硕士:首尔国立大学电子工程学士 (2000 - 2002) 博士:首尔国立大学电子工程学士 (2002 - 2006) 工作经历
摘要:量子状态从微波炉到光学结构域的相干转导可以在量子网络和分布式量子计算中起关键作用。我们介绍了在硅平台上的混合锂锂锂中形成的压电机电设备的设计,该设备适用于微波至光学量子转导。我们的设计基于具有光力学晶体腔的超低模式压电腔的声学杂交。Niobate锂的强压电性质使我们能够通过声学模式介导转导,该声学模式仅与硝酸锂相互作用,并且主要是硅状的,并且具有非常低的电气和声学损失。我们估计,该传感器可以实现<0的固有转换效率高达35%。5添加噪声量子量当与超导式的transmon值偶联并以10 kHz的重复速率以脉冲模式运行时,添加了噪声量子。在这种混合锂硅硅酸盐透射剂中获得的性能改善使其适合通过光学纤维链路连接的超导量子处理器之间的量子纠缠。
摘要 利用反应脉冲直流磁控溅射技术进行了一项实验研究,探索了在 623 K (± 5K) 下沉积的半导体氧化钇薄膜的光谱和结构特性。根据 x 射线衍射和透射电子显微镜测量的结果,一氧化钇很可能在 β-Y 2 O 3 和 α-Y 2 O 3 之间的过渡区中形成,并伴有晶体 Y 2 O 3 。由于 4d 和 5s 轨道之间的能量分离低和/或相应轨道亚能级的自旋状态不同,一氧化物的稳定性在热力学意义上最有可能受晶体大小的自身限制。与金属氧化物立方结构相比,这种行为会导致晶体结构扭曲,并且还会影响纳米晶/非晶相的排列。此外,椭圆偏振光谱法表明半导体氧化钇的形成特征比结晶的 Y 2 O 3 更显著,且大多为非晶态。我们的目的是利用目前的研究结果,加深对不寻常价态 (2+) 钇的形成动力学/条件的理解。
背景和目标:本文首次设计并介绍了一种基于电流镜和折叠级联拓扑组合的新型折叠镜 (FM) 跨阻放大器 (TIA) 结构。跨阻放大器级是接收器系统中最关键的构建块。这种新型拓扑基于电流镜拓扑和折叠级联拓扑的组合,采用有源元件设计。其理念是在输入节点使用电流镜拓扑。在所提出的电路中,与许多其他已报道的设计不同,信号电流(而不是电压)被放大直到到达输出节点。由于使用二极管连接的晶体管作为电流镜拓扑的一部分,所提出的 TIA 具有低输入电阻的优势,这有助于隔离主要输入电容。因此,以相当低的功耗实现了 5Gbps 的数据速率。此外,设计的电路仅使用了六个有源元件,占用的芯片面积很小,同时提供 40.6dBΩ 的跨阻抗增益、3.55GHz 频率带宽和 664nArms 输入参考噪声,并且仅消耗 315µW 功率和 1V 电源。结果证明了所提出的电路结构作为低功耗 TIA 级的正确性能。方法:所提出的拓扑基于电流镜拓扑和折叠级联拓扑的组合。使用 Hspice 软件中的 90nm CMOS 技术参数模拟了所提出的折叠镜 TIA 的电路性能。此外,对晶体管的宽度和长度尺寸进行了 200 次蒙特卡罗分析,以分析制造工艺。结果:所提出的 FM TIA 电路提供 40.6dBΩ 跨阻增益和 3.55GHz 频率带宽,同时使用 1V 电源仅消耗 315µW 功率。此外,由于分析通信应用中接收器电路中输出信号的质量至关重要,所提出的 FM TIA 对于 50µA 输入信号的眼图打开约 5mV,而对于 100µA 输入信号,眼图垂直打开约 10mV。因此,可以清楚地显示眼图的垂直和水平开口。此外,跨阻增益的蒙特卡罗分析呈现正态分布,平均值为 40.6dBΩ,标准差为 0.4dBΩ。此外,FM TIA 的输入电阻值在低频时等于 84.4Ω,在 -3dB 频率时达到 75Ω。通过对反馈网络对输入电阻的影响的分析,得出了在没有反馈网络的情况下,输入电阻可达1.4MΩ,由此可见反馈网络的存在对于实现宽带系统的重要性。结论:本文本文介绍了一种基于电流镜拓扑和折叠级联拓扑组合的跨阻放大器,该放大器可放大电流信号并将其转换为输出节点的电压。由于输入节点存在二极管连接的晶体管,因此 TIA 的输入电阻相对较小。此外,六个晶体管中有四个是 PMOS 晶体管,与 NMOS 晶体管相比,它们的热噪声较小。此外,由于前馈网络中未使用无源元件,因此所提出的折叠镜拓扑占用的片上面积相对较小。使用 90nm CMOS 技术参数的结果显示,跨阻增益为 40.6dBΩ,频率带宽为 3.55GHz,输入参考噪声为 664nArms,使用 1 伏电源时功耗仅为 315µW,这表明所提出的电路作为低功耗构建块的性能良好。
摘要:在行业标准的SI平台上节能和超级反应光源的整体整合已成为一种有前途的技术,可以实现完全集成的基于SI的光子集成电路。最近,由于其独特的优点,包括针对结构缺陷和疾病的鲁棒性,使用拓扑保护的缺陷模式通过使用拓扑保护的缺陷模式进行了广泛的研究。然而,由于Si和ⅲ–ⅴ材料之间的显着材料差异,先前对半导体拓扑激光器的证明在其天然底物上受到限制。在这里,我们通过实验报告了超低阈值连续波泵送的单模式INAS/GAAS量子点拓扑拓扑状态纳米层单层单层整合在CMOS兼容SI(001)底物上。我们的结果代表了针对SI光子学的超跨和高性能集成的纳米级光源的新途径,并为拓扑光子学启用了有希望的应用。关键字:纳米剂,拓扑绝缘子激光器,角状态纳米剂,硅光子学,量子点
新兴的超低覆盖范围单细胞DNA测序(SCDNA-SEQ)技术已经实现了肿瘤内拷贝数畸变(CNA)的高分辨率进化研究。由于这些测序技术非常适合鉴定CNA,由于测序的协调性均匀性,但覆盖范围的稀疏性对研究单核苷酸变体(SNV)的研究构成了挑战。为了最大程度地提高越来越多的超低覆盖范围SCDNA-SEQ数据并获得对肿瘤演化的全面了解,也必须分析SNV从同一组肿瘤细胞中的演变。我们提出了P植物,这是一种从肿瘤的超低覆盖scDNA-seq数据中推断克隆树的方法。基于概率模型,我们的方法通过识别肿瘤史上的关键进化事件来递归对数据进行分区。我们在模拟数据以及两个真实数据集上证明了P生物的性能,发现P Hirtilizer有效地利用了数据中固有的拷贝数信号,以更准确地揭示了与以前的方法相比的克隆结构和基因型。可用性:https://github.com/elkebir-group/phertilizer
X. Ma, H. Bin, BT van Gorkom, TPA van der Pol, MJ Dyson, CHL Weijtens, SCJ Meskers, RAJ Janssen, GH Gelinck 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 电子邮件: rajjanssen@tue.n l M. Fattori 电气工程系 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 AJJM van Breemen, D. Tordera, GH Gelinck TNO/Holst Center High Tech Campus 31 Eindhoven 5656 AE, 荷兰 瓦伦西亚 C/ Chair of J. Beltran 2, Paterna 46980, 西班牙 RAJ Janssen 荷兰基础能源研究所 De Zaale 20, Eindhoven 5612 AJ, 荷兰
X. Ma, H. Bin, BT van Gorkom, TPA van der Pol, MJ Dyson, CHL Weijtens, SCJ Meskers, RAJ Janssen, GH Gelinck 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 电子邮件: rajjanssen@tue.n l M. Fattori 电气工程系 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 AJJM van Breemen, D. Tordera, GH Gelinck TNO/Holst Center High Tech Campus 31 Eindhoven 5656 AE, 荷兰 瓦伦西亚 C/ Chair of J. Beltran 2, Paterna 46980, 西班牙 RAJ Janssen 荷兰基础能源研究所 De Zaale 20, Eindhoven 5612 AJ, 荷兰
可控硅整流器 (SCR) 因其对 ESD 应力的高稳定性而成为最具吸引力的 ESD 防护元件 [1]。然而,传统 SCR 器件具有较高的触发电压 (Vt1) 和较低的维持电压 (Vh) [2,3]。因此,它无法在大多数电路中提供有效的 ESD 防护。为了解决这些问题,许多基于局部的改进 ESD 防护方案被提出,例如改进型横向 SCR (MLSCR)、低触发 SCR (LVTSCR) 和二极管串触发 SCR (DTSCR) [4,5]。其中,DTSCR 能够实现非常低且灵活的触发电压,近年来许多基于 DTSCR 的改进结构被提出。例如,Chen、Du 等人提出了一种称为 LTC-DTSCR 的新型 DTSCR [6]。 LTC-DTSCR通过抑制DTSCR寄生SCR的触发,进一步降低了触发电压。但DTSCR结构相对较高的过冲电压和较慢的导通速度限制了其在充电器件模型(CDM)保护中的应用[7]。此外,DTSCR不适用于2.5 V及以上电路的ESD防护,因为触发二极管数量的增加会因达林顿效应而导致较大的漏电和闩锁风险。LVTSCR与传统SCR存在同样的问题:触发电压过高,难以调整以适应先进CMOS工艺的ESD设计窗口。目前,[8,9]中已提出了几种改进的LVTSCR结构,但它们均侧重于提高保持电压,这些器件的触发电压仍然较高(~8 V)。此外,还有许多新型SCR结构被提出。 Lin 等通过在 SCR 中引入两个栅极,实现了低触发电压、低漏电、低寄生电容的新型 SCR 器件 [10],但需要外部 RC 电路辅助触发,会造成巨大的额外面积消耗。P. Galy 等将 SCR 嵌入 BIMOS 中 [11],实现了超紧凑布局、低触发电压、低导通电阻,但其保持电压较低,如果施加的电压域较高,会增加闩锁风险。