摘要 — 这篇前瞻性文章简要概述了可穿戴超声设备的材料、制造、波束成形和应用,这是一个发展迅速、影响广泛的领域。小型化和软电子技术的最新发展显著推动了可穿戴超声设备的发展。与传统超声探头相比,此类设备具有独特的优势,包括更长的可用性和操作员独立性,并已证明其在连续监测、非侵入性治疗和高级人机界面方面的有效性。可穿戴超声设备可分为三大类:刚性、柔性和可拉伸,每类都有独特的特性和制造策略。本文回顾了每种可穿戴超声设备在设备设计、封装和波束成形方面的关键独特策略。此外,我们还重点介绍了可穿戴超声技术实现的最新应用,包括连续健康监测、治疗和人机界面。本文最后讨论了该领域面临的突出挑战,并概述了未来发展的潜在途径。
无论是电子和机械传感器、旋转和线性传感器、识别系统还是用于高性能自动化的优化连接产品。巴鲁夫不仅掌握了所有操作原理的整个技术品种,而且还提供创新技术和最现代化的电子设备——在我们自己的认证测试实验室中经过了细致的验证。巴鲁夫质量管理已通过 DIN EN ISO 9001:2008 认证。巴鲁夫技术可用于世界任何地方,因为它甚至符合区域质量标准。而且巴鲁夫技术在国际上可用。因此,您身边总有一位巴鲁夫专家。
超声波金属点焊是电力电子封装中使用的标准技术,主要用于将电源端子连接器焊接到直接键合铜 (DBC) 基板上。超声波引线键合是一种非常相似的技术,但在工艺、应用和可用设备方面存在显著差异。将焊机的超声波功率与引线键合机的灵活性、精度和工艺控制结合成“智能焊接工艺”的生产设备非常可取。本文比较了这些技术,并介绍了圆柱形电池组的工艺结果。它们突出了智能超声波焊接相对于传统超声波焊接的优势,并证明了智能超声波焊接和引线键合各有优缺点。1 电力电子中的超声波焊接和引线键合
无论是电子和机械传感器、旋转和线性传感器、识别系统还是用于高性能自动化的优化连接产品。巴鲁夫不仅掌握了所有技术品种和所有操作原理,而且还提供创新技术和最现代化的电子设备——在我们自己的认证测试实验室中经过了细致的验证。巴鲁夫质量管理已通过 DIN EN ISO 9001:2008 认证。巴鲁夫技术可用于世界任何地方,因为它甚至符合区域质量标准。而且巴鲁夫技术在国际上可用。因此,您身边总有一位巴鲁夫专家。
• 系统功率输出指示焊接周期内正常或可能的过载操作条件。• 一毫秒采样率每秒对周期参数进行一千次采样,以获得出色的精度和可重复性。• 4 行 LCD 显示屏,方便用户使用并显示焊接部件数据。• 自我诊断错误消息简化了故障排除和编程错误。• 可编程的不良或可疑部件限值指示所有超出可接受部件公差范围的参数(EZX)。• 视觉和声音警报提醒操作员任何可疑或不良部件状况(EZX)。• 具有可编程擦洗时间的标准焊接结束接地检测功能允许对纺织品等进行切割和密封。• 系统输出 - 超声波激活、系统故障、过热、过载、在线/离线状态。隔离坏部分好部分 (EZX),准备就绪并留置。
靶向给药有望提高当前全身药物治疗的有效性和安全性。聚焦超声正成为一种非侵入性和实用的靶向药物释放能量。然而,尚未确定哪种纳米载体和超声参数能够提供有效和安全的释放。全氟碳纳米液滴有可能实现这些目标,但目前的方法要么有效,要么安全,但不能兼具两者。我们发现,只要被足够低频率的超声激活,具有高度稳定的全氟碳核心的纳米载体就能介导有效的药物释放。我们证明了这种配方在非人类灵长类动物中具有良好的安全性。为了便于将这种方法转化为人类,我们提供了一种制造纳米载体的优化方法。这项研究提供了一种配方和释放参数,用于通过聚焦超声波在身体部位从纳米颗粒载体中有效安全地释放药物。
神经系统疾病是全球最常见的致残原因和第二大死亡原因。这些疾病通常与脑血流的变化和受损有关,因此脑血管成像对于临床诊断和科学研究都至关重要。然而,目前可用的工具(其中最主要的是磁共振成像(MRI))不足以普遍地检查活体大脑:(1)血管本质上是动态的,但现有工具只能捕捉静态快照;(2)脑血管跨越从厘米到微米的尺度,速度从几米每秒到不到一毫米每秒,但 MRI 缺乏捕捉全频谱的分辨率和灵敏度;(3)MRI 扫描仪体积大、幽闭,需要患者保持静止,这无法对患者进行连续成像或自由移动时的成像,也无法扫描患有运动障碍、幽闭恐惧症或肥胖的人。
3.3.1.正常运行 ...................................................................................................................... 26 3.3.2.报警级别 ...................................................................................................................... 27 3.3.3.报警延迟 ...................................................................................................................... 28 3.3.4.自检和自清洁 ...................................................................................................................... 30 3.3.5.加热(可选) ...................................................................................................................... 31 3.3.6.输出选项 ...................................................................................................................... 32
摘要。用于传播导波的压电超声波传感器可用于检查工程结构中的大面积区域。然而,导波声信号固有的色散和噪声、结构中的多重回波以及缺乏近似或精确的模型,限制了它们作为连续结构健康监测系统的使用。在本文中,研究了在板状结构上随机放置压电传感器网络以检测和定位人为损坏的实现。在厚度为 1.9 毫米的铝薄板上设置了一个以一发一收配置工作的宏纤维复合材料 (MFC) 传感器网络。使用离散小波变换在时间尺度域中分析信号。这项工作有三个目标,即首先使用传感器网络产生的超声波的短时小波熵 (STWE) 开发基于熵分布的损伤指数,其次确定备用宏光纤复合材料 (MFC) 传感器阵列检测人为损伤的性能,第三对收集的信号实施到达时间 (TOA) 算法,以定位人造圆形不连续的损伤。我们的初步测试结果表明,所提出的方法为损伤检测提供了足够的信息,一旦与 TOA 算法相结合,就可以定位损伤。
- 这些部位是否受到足够高的应力。因此,显然需要对材料进行预防性调查,以验证其实际损伤状态[9]。 2 无损控制 无损控制技术 (NDT) 是最好的缺陷评估方法之一 [10],它可以识别第一阶段结构损伤,从而防止结构失效并减少经济损失 [11]。该技术的优点之一是远程控制,可降低运营成本、停机时间等... [12] [13]。事实证明 [14] [15],材料缺陷(如微裂纹、分层、夹杂物)是非线性的来源。为了利用这一特性,使用超声波的非线性无损检测 (NNDT) 已在 NDT 中建立 [16] [17]。已经证明 [18] [19] [20],NNDT 在检测小损伤方面比传统的线性技术 [21] [22] 具有更高的灵敏度。事实上,非线性指标具有更宽的动态范围,通常比线性参数高出十倍 [23] [24]。因此可以得出结论,非线性参数对缺陷检测的灵敏度远高于线性参数 [25]。超声波已成为无损检测技术的有效选择。3 非线性超声波超声波对结构损伤高度敏感,向各个方向传播,传播速度快,