楔形键合机使用超声波能量将金属线键合到金属基板上,整个过程仅需几毫秒。在大批量生产中,故障会导致停机和成本增加。在线监控系统用于减少故障并确定根本原因。我们开发并测试了一种算法来对超声波线键合生产中的异常值进行分类。该算法用于大型线楔形键合机,以测量和分析过程信号并检测和分类键合异常值。它可以帮助键合机操作员、生产主管和工艺工程师检测工艺偏差并解决潜在的根本原因。该算法测量键合信号,例如变形、超声波电流和超声波频率。根据键合顺序和工艺参数,键合会自动分为子组,然后对子组内的信号进行归一化。对于异常值分类,从归一化信号中提取特征并将其组合成故障类别值。污染、无线、高变形、线错位和基板不稳定等故障类别是独立计算的。我们测量了大型铝线键合故障类别的检测率,并演示了该算法如何根据信号计算故障类别值。此外,我们还展示了如何定义新的信号特征和故障类别来检测特定于生产或罕见的故障类别。关键词楔形键合机、超声波引线键合、异常值分类、键合故障、检测算法。
摘要:声学显微镜和声镊在微粒操控、生物医学研究和无损检测等领域有着重要的应用价值。超高频超声换能器是声学显微镜的关键部件,而声镊和声透镜又是超高频超声换能器的重要组成部分,因此声透镜的制备至关重要。硅具有声速高、声衰减小、可加工性好等特点,是制备声透镜的合适材料。前期研究中硅透镜主要采用刻蚀法制备,但刻蚀存在一些缺点,大尺寸刻蚀工艺复杂、耗时长、成本高,且垂直刻蚀优于球面刻蚀。因此,本文介绍了一种新的超精密加工方法来制备硅透镜。本文制备了口径为892 μm、深度为252 μm的硅透镜,并基于硅透镜成功制备了中心频率为157 MHz、−6-dB带宽为52%的超高频超声换能器。换能器焦距为736μm,F数约为0.82,换能器横向分辨率为11μm,可以清晰分辨硅片上13μm的狭缝。
内布拉斯加大学林肯分校机械与材料工程系,内布拉斯加州林肯市,美国 通讯作者 – Joseph A. Turner,电子邮件 jaturner@unl.edu。注:Haitham Hadidi 的当前地址是沙特阿拉伯吉赞大学机械工程系,吉赞,吉赞 45142。摘要 金属混合增材制造 (AM) 工艺适合于制造可提高工程性能的复杂结构。混合 AM 可用于制造功能梯度材料,通过完全耦合的制造工艺和/或能源的协同组合,可在整个领域内产生微观结构和材料特性的变化。工程设计和制造空间的这种扩展对无损评估提出了挑战,包括评估无损测量对功能梯度的灵敏度。为了解决这个问题,使用线性超声测量来检测三种制造方法制成的 420 不锈钢试样:锻造、AM 和混合 AM(定向能量沉积 + 激光喷丸)。将波速、衰减和漫反射结果与试样沿构建/轴向的显微硬度测量值进行比较,同时使用微观结构图像进行定性验证。超声波测量结果与破坏性测量结果相得益彰,分辨率没有任何实质性损失。此外,超声波方法被证明可有效识别混合 AM 试样上的弹性特性和微观结构的梯度和循环性质。这些结果突出了超声波作为混合 AM 样品高效且易于获取的无损表征方法的潜力,并为 AM 中的进一步无损评估决策提供信息。
B 组患者将使用配备 5 cm² 超声波探头的 Cosmogamma US13 EVO 产生的超声波进行治疗。治疗前,将通过涂抹特殊导电凝胶来准备治疗部位。患者将以坐姿接受治疗,患臂外展,肘关节屈曲约 60 度,前臂旋前并放在治疗台上。超声波频率将设置为 3 MHz,空间平均时间峰值 (SATP) 设置为 0.5 W/cm²。占空比为 20%。在每次治疗过程中,将以半静止方式(探头的运动将非常有限)用超声波治疗外上髁最痛点 5 分钟。患者将在连续两周的工作日接受总共 10 次治疗。
无论是电子和机械传感器、旋转和线性传感器、识别系统还是用于高性能自动化的优化连接产品。巴鲁夫不仅掌握了所有技术品种和所有操作原理,而且还提供创新技术和最现代化的电子设备——在我们自己的认证测试实验室中经过了细致的验证。巴鲁夫质量管理已通过 DIN EN ISO 9001:2008 认证。巴鲁夫技术可用于世界任何地方,因为它甚至符合区域质量标准。而且巴鲁夫技术在国际上可用。因此,您身边总有一位巴鲁夫专家。
• 系统功率输出指示焊接周期内正常或可能的过载操作条件。• 一毫秒采样率每秒对周期参数进行一千次采样,以获得出色的精度和可重复性。• 4 行 LCD 显示屏,方便用户使用并显示焊接部件数据。• 自我诊断错误消息简化了故障排除和编程错误。• 可编程的不良或可疑部件限值指示所有超出可接受部件公差范围的参数(EZX)。• 视觉和声音警报提醒操作员任何可疑或不良部件状况(EZX)。• 具有可编程擦洗时间的标准焊接结束接地检测功能允许对纺织品等进行切割和密封。• 系统输出 - 超声波激活、系统故障、过热、过载、在线/离线状态。隔离坏部分好部分 (EZX),准备就绪并留置。
无论是电子和机械传感器、旋转和线性传感器、识别系统还是用于高性能自动化的优化连接产品。巴鲁夫不仅掌握了所有技术品种和所有操作原理,而且还提供创新技术和最现代化的电子设备——在我们自己的认证测试实验室中经过了细致的验证。巴鲁夫质量管理已通过 DIN EN ISO 9001:2008 认证。巴鲁夫技术可用于世界任何地方,因为它甚至符合区域质量标准。而且巴鲁夫技术在国际上可用。因此,您身边总有一位巴鲁夫专家。
人工智能 (AI) 将医学图像转换为高通量可挖掘数据。机器学习算法可用于建模病变检测、目标分割、疾病诊断和预后预测,显著促进了临床决策支持的精准医疗。短短几年内,发表的文章数量急剧增加,包括有关人工智能超声的文章。鉴于超声波具有与其他成像方式不同的独特属性,包括实时扫描、操作员依赖性和多模态性,读者应特别注意评估依赖超声波人工智能的研究。本综述为读者提供有针对性的指南,涵盖可用于识别强大和动力不足的超声波人工智能研究的关键点。
SL1188P 便携式超声波流量计 SL1188P 型号为便携式超声波流量计。它通过 PDA 收集流量数据,并使用“UFM”软件下载流量数据。SL1188P 便携式超声波流量计由流量传感器(超声波)、流量变送器和个人数字助理 (PDA) 组成。SL1188P 套件具有方便的磁化传感器架、良好的操作界面和高存储卡。它设计为用户友好型,即使在最恶劣的工业环境中也能使用;它的高强度防震外壳配有橡胶圈密封件和 NEMA4 等级,可为其提供良好的保护。即使掉入水中,它也应该正常工作。这是一款专业制造的便携式流量计。• SD卡大容量存储 • 磁化管夹,安装方便 • 适用于多种流体介质 • 高可靠性,可长期稳定运行,无运动元件,几乎可达到零维护 规格:流量范围 0 ~ ± 40 ft/s (0 ~ ± 12m/s)
2.1 超声波系统简介................................................................................................................................................................ 5 2.2 超声波回波和信号处理.................................................................................................................................................... 5 2.3 传感器类型................................................................................................................................................................ 7 2.4 传感器拓扑................................................................................................................................................................ 8 2.5 传感器频率.................................................................................................................................................................... 8 2.6 传感器驱动(变压器驱动和直接驱动)和电流限制.................................................................................................... 9 2.7 脉冲计数.................................................................................................................................................................... 9 2.8 最小检测范围.................................................................................................................................................................... 10