摘要 - 本文介绍了针对低损坏互连的高带宽天线(AIP)模块的设计和演示,这些模块和Yagi-uda天线性能是在100 m m低系数的28-GHZ带的28-GHZ带上制造的100 µm低系数(CTE)玻璃。它显示了关键技术构建块的建模,设计和表征以及高级3D玻璃包装的过程开发。构建块包括在100- µm玻璃基板上具有背面模具组件的阻抗匹配的天线到de-die信号转变,Yagi – UDA天线和3-D主动 - 通行整体。讨论了天线集成毫米波(MM-WAVE)模块的设计和堆叠优化。还描述了在多层薄玻璃包装中实现高密度互连和精确尺寸控制的过程。关键技术构建块的表征结果显示,通过(TPV)(TPV),插入损失为0.021 dB,导致全链损失小于1 dB,回报损失低于20 dB。由于玻璃基板实现了过程控制,制造的Yagi – Uda天线具有宽带宽的高可重复性。天线测量值显示带宽为28.2%,涵盖了整个28 GHz第1级(5G)频带(N257,N258和N261)。,带有80- µm焊球的浮动芯片组装了低噪声放大器,可根据需要显示20 dB的最大增益。基于玻璃的包装集成天线的性能是针对其他5G底物技术的基准测试的,例如有机层压板或基于陶瓷的底物。
至少自 Rittenhouse 和 Fraunhofer 的线衍射光栅发明以来,使用结构化材料的光学设备一直在光学元件中扮演着核心角色。然而,过去 35 年,光学物理学尤其受到结构化材料对光波长尺度的影响,以及随后将电子晶体固态类比应用于麦克斯韦方程组处理的影响。光子晶体 [1] 的特征是周期为 X/4,而超材料 [2] 的特征尺寸/周期可以是 X/10 或更小。同时,光学天线(具有类似波长尺度尺寸的散射元件)将射频和微波天线概念引入了微光子学和纳米光子学。在这里,我们以 3D 超薄膜为平台,这些不同的结构化介质可以组合成一个具有光学行为的单一设备,这些行为展示了这些概念的耦合和混合。这些超薄膜以毫米级制造,周期性为微米级,亚晶胞结构为数十至数百纳米级。最近的研究突出了将周期性结构阵列与“设计者”散射元件相结合的潜在设计优势 [3]。
本研究旨在评估饮食脂质水平对脂质代谢调节基因mRNA转录本的影响。将含有分级脂质(80、100和120 g/kg)的实验饮食组合和蛋白质(450、500和550 g/kg)水平的水平喂入14至35 dph(日孵化后)的Clarias Magur(Indian Walking Catfih)幼虫。All the lipolytic genes, such as pancreatic triacylglycerol lipase ( PL ), lipoprotein lipase ( LPL ), and bile salt-activated lipase ( BAL ), and genes for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic enzymes like fatty acyl desaturase-2 ( FADS2 ), fatty acyl desaturase-5 (FADS5)和延伸酶(ELOV)在各种组织中表达。在肠和肝脏中检测到脂肪解基因的mRNA转录水平很高,同样,在肝脏,脑和肠道中,主要发现去饱和酶和延伸酶表达。在饮食中,在8%的饮食脂质水平下观察到脂溶性和LC-PUFA生物合成基因的显着高表达。所有研究基因的mRNA表达在12%的饮食脂质含量下被下调。因此,本研究得出的结论是,在Magur幼虫的最佳饮食脂质水平为8%,有效的营养利用率和脂质代谢途径发生。
1 北京航空航天大学微电子学院费尔特北京研究所,北京 100191 2 瑞士洛桑联邦理工学院材料研究所(IMX)纳米磁性材料与磁子学实验室,洛桑 1015 瑞士 3 科罗拉多州立大学物理系,科罗拉多州柯林斯堡 80523 美国 4 中国科学院大学物理研究所北京凝聚态物理国家实验室,北京 100190 5 北京大学物理学院电子显微镜实验室,北京 100871 6 北京大学物理学院国际量子材料中心,北京 100871 7 南方科技大学深圳量子科学与工程研究院、物理系,深圳 518055 8 量子物质协同创新中心,北京 100871,中国 9 洛桑联邦理工学院(EPFL)工程学院微工程研究所(IMT),洛桑 1015,瑞士
晶体生长过程。但由于胶体纳米晶体在与周围基质相互作用的同时经历快速成核和生长,因此晶体生长动力学难以控制。纳米晶体胶体溶液中微结构的形成通常用奥斯特瓦尔德熟化 (OR) 理论来解释。21,25,26 OR 机制被广泛用于解释纳米晶体的晶体生长,纳米晶体可产生直径较大的颗粒,通常在微米尺寸范围内。然而,在某些情况下,纳米晶体的晶体生长在纳米范围内通常无法用 OR 动力学来解释。27 – 29 在纳米尺度上,有证据表明晶体生长更受另一种机制的主导,称为取向附着 (OA),其中纳米晶体通过共享共同的晶体取向自组装成单晶。 30,31“ OA ”的概念最早由 Banfield 等人在研究 TiO 2 纳米晶体的水解合成时提出。32 从那时起,这种基于聚集的晶体生长概念就对构建纳米级材料很有吸引力。由于 OA 工艺通过增强自下而上的制造工艺实现了初级纳米晶体的自组装,因此它可以生产出具有多种特性的新型结构,不同于相应的块体材料。特别是,OA 工艺已被证明是一种制备各向异性纳米结构的有效方法,其中纳米晶体种子的附着总是引导自组装到一个取向,从而产生一维纳米线或纳米棒。33 – 35 在 OA 机制中,晶体生长速率与表面能呈指数相关。晶体生长沿特定晶面进行,这取决于与晶体面相关的相对比表面能。36 各个面的表面能差异会导致较高表面能平面生长得更快,而较低表面能平面则作为产品的面。例如,研究表明,由于 [001] 和 [101] 面之间的表面能差异,金红石 TiO 2 纳米晶体通过沿 [001] 方向融合纳米晶体形成一维项链状纳米结构,从而促进 OA 机制的定向晶体生长。32 在另一项最近的研究中,实时观察到了由 OA 机制引导的氢氧化铁颗粒的形成,证明了晶体生长过程中纳米晶体的旋转和晶体取向。 37 OA 还被证实可用于制备 ZnO 纳米棒、38 MnO 多足体、39 稀土金属氧化物纳米颗粒 40 以及具有各种形貌的混合氧化物纳米结构。21 尽管 OA 指导合成了具有各种形貌的形状和尺寸控制的金属氧化物和混合氧化物纳米结构,21 在OA驱动的湿化学合成中构建尺寸控制的金属氧化物纳米线的例子非常少。41,42
摘要:双曲超材料的未来应用需要具有替代超薄导电/电介质膜的材料堆栈,这些薄膜具有良好的厚度均匀性和降低的粗糙度。在这项工作中,使用田口方法优化了铝的脉冲直流磁控溅射技术,以制造具有改进的粗糙度水平的铝膜。进行的结构表征证明了较小的铝畴和更好的表面均匀性。优化的工艺用于制造 Al / HfO x 多层结构作为超材料介质。在紫外/可见光范围内对所制造的结构进行了光学表征。所提出的发现证明了所检查堆栈的有效反射率的可调谐性效应。所提出的结果对于未来基于双曲超材料的新型光子装置中的多层结构的应用很有希望。
摘要:由于富含孔隙和均匀的孔径,金属有机框架(MOF)具有与其他材料相比,具有明显的优势,以实现精确和快速的膜分离。但是,实现超薄水稳定的MOFS膜仍然是一个巨大的挑战。在这里,我们首先报告了二维(2D)单层铝四铝 - (4-羧基苯基)卟啉框架(称为Al-Mof)纳米片的成功去角质。超薄水稳定的al-mof膜是通过使用去角质的纳米片作为构建块来组装的。在达到2.2 mol m -2 h -1 bar -1的水通量时,获得的2D Al -MOF层状膜在研究的无机离子时表现出近100%的排斥率。模拟结果证实了al-mof纳米片域的固有纳米孔域离子/水分离,垂直对齐的孔径通道是水分子的主要传输途径。
Ni 前驱体采用一步水热法制备(如图 S1† 所示)。首先,将 0.4 g 尿素和 0.58 g NiNO3$6H2O 在 3 mL 乙醇和 37 mL 纯净水的混合物中搅拌 60 分钟。然后,将该溶液和矩形 Ni 泡沫基底转移到高压釜中,以 3 C min-1 的升温速率加热至 180 C,并在 180 C 下保温 18 小时。第三,将产物从高压釜中取出,用超声波清洗 10 分钟,以去除表面的松散产物。然后将 Ni 前驱体和 Na2S 溶液转移到高压釜中,在 120 C 下加热并保温 3 小时,从而制备出 NiS 纳米片。最后,用去离子水清洗所得样品并在 60 C 下干燥以进一步表征。 Ni泡沫上NiS的质量负载约为28mg,面积负载约为3.2cm2,计算得出单位面积质量负载为8.8mg/cm2。
致谢 本研究部分由伯克利负电容晶体管中心 (BCNCT)、ASCENT(联合大学微电子计划 (JUMP) 的六个中心之一)、DARPA 赞助的半导体研究公司 (SRC) 项目以及 DARPA T-MUSIC 项目资助。本研究使用了先进光子源的资源,先进光子源是美国能源部 (DOE) 科学办公室用户设施,由阿贡国家实验室为能源部科学办公室运营,合同编号为 DE-AC02-06CH11357。本研究使用了先进光源的资源,先进光源是美国能源部科学办公室用户设施,合同编号为 DE-AC02-05CH11231。斯坦福同步辐射光源、SLAC 国家加速器实验室的使用由美国能源部、科学办公室、基础能源科学办公室资助,合同编号为 DE-AC02-76SF00515。电子显微镜检查在劳伦斯伯克利国家实验室 (LBNL) 分子铸造厂进行,由美国能源部基础能源科学办公室科学办公室 (DE-AC02-05CH11231) 提供支持。JC 和 RdR 感谢美国能源部颁发的总统早期科学家和工程师职业奖 (PECASE) 的额外支持。作者贡献薄膜合成由 SSC、GK 和 DK 完成;电子显微镜检查分别由 RdR 和 S.-LH 在 JC 和 RR 的监督下完成,分析由 L.-CW 在 SS 的监督下完成;扫描探针显微镜由 SSC 和 NS 完成;干涉位移传感器测量由 RW 和 RP 完成和开发;扫描电容显微镜由 HZ 完成;X 射线结构表征由 SSC、NS 和 MM 在 AM 和 EK 的监督下完成;X 射线光谱由 SSC 在 RC、PS 和 EA 的监督下完成;二次谐波生成由 JX 在 XZ 的监督下进行;电气测量由 SSC、NS 和 AD 进行;SSC 和 SS 共同撰写了手稿。SS 监督了这项研究。所有作者都参与了讨论并对手稿发表了评论。利益竞争 作者声明不存在利益竞争。