摘要 — 超维计算 (HDC) 正在迅速成为传统深度学习算法的有吸引力的替代方案。尽管深度神经网络 (DNN) 在许多领域取得了巨大的成功,但它们在训练期间所需的计算能力和存储空间使得将它们部署在边缘设备中非常具有挑战性,甚至不可行。这反过来不可避免地需要将数据从边缘传输到云端,这在可用性、可扩展性、安全性和隐私方面引发了严重的担忧。此外,边缘设备通常从传感器接收的数据本质上是有噪声的。然而,DNN 算法对噪声非常敏感,这使得以高精度完成所需的学习任务变得非常困难。在本文中,我们旨在全面概述 HDC 的最新进展。HDC 旨在通过使用更接近人脑的策略来实现实时性能和稳健性。事实上,HDC 的动机是人类大脑在高维数据表示上运行的观察。在 HDC 中,对象被编码为具有数千个元素的高维向量。在本文中,我们将讨论 HDC 算法对噪声的良好鲁棒性以及从少量数据中学习的能力。此外,我们将介绍 HDC 与冯·诺依曼架构之外的出色协同作用,以及 HDC 如何通过其所需的超轻量级实现为边缘高效学习打开大门,这与传统 DNN 不同。索引术语 — 超维计算、嵌入式系统、节能计算、对抗性攻击、电压调节、内存计算、安全、图形、机器人、计算机视觉
基于对少量原子的操纵或超低温下产生的量子效应的各种高灵敏度技术的开发,导致了大量量子器件的迅速普及,其中许多现在开始实现商业应用。同时,这些器件依靠从一个量子态到另一个量子态的离散状态变化,具有极高的灵敏度,使它们成为探测假定的超轻粒子或场与量子器件本身之间非常弱的相互作用的理想探测器。这导致它们在低能粒子物理领域得到广泛应用,以及近年来对与轴子、ALP 和许多其他暗物质候选者相关的低能相空间的快速探索(许多评论,包括 [1-4],都涵盖了这些应用)。这种敏感性似乎使这些设备不适合高能物理应用,因为高能物理应用的检测机制主要依赖于通过粒子与物质相互作用的准连续效应来检测和重建单个粒子的属性,将相互作用粒子对探测器主体原子进行多次电离的连续过程所沉积的电荷积分。要形成一个可以与热和统计波动区分开来的可用信号,需要进行大量这样的电离过程。此外,现有的探测器系列已经非常适合高分辨率跟踪、量热或粒子识别。在本文中,我们讨论了一些量子设备或系统,在这些量子设备或系统中,量子效应发挥了重要作用,以期将它们应用于粒子跟踪、粒子识别或量热领域。我们特别关注那些可能产生目前难以获得的信息的应用,或者现有技术的某些边界条件或
低地球轨道上的卫星主要由光伏模块供电。随着新卫星概念对电力的需求不断增长,太阳能电池必须具有灵活性和超轻性,以降低发射成本。CIGS 薄膜太阳能技术是一种很有前途的候选技术,因为它可以在柔性基板上制造,并且具有高辐射硬度。另一方面,CIGS 的辐射性能较差,会导致高温,从而导致功率损失。CIGS 上的高辐射率涂层已有报道,但尚未解决其对热和电方面的影响。这里我们介绍了硅氧碳氮化物涂层的光学特性及其对用于 DLR 的 GoSolAr 动力帆任务的 CIGS 电池电气参数的影响。我们表明,单层涂层可以将辐射率从 0.3 显著提高到 0.72,同时将光谱损失降至最低,对底层 CIGS 电池的功能影响可忽略不计。我们模拟了涂层对轨道太阳能电池的热影响,并预测电池的最高温度将降低 30 摄氏度,从而显著提高功率。此外,涂层在 8 – 13 μ m 的大气窗口内的发射率为 0.87,使其成为地面太阳能电池非常好的被动辐射冷却器。这种低成本涂层可以替代玻璃,并且该工艺可以扩大到大型 CIGS 模块。该涂层还可以显著提高太阳能模块的功率质量比,从而降低太空应用的成本。
结合了标准和深度可分离的扩张卷积,降低了复杂性,同时保持了高度的准确性。它有四种配置,从强大的194万参数Twinlitenet +大到超轻量级34K参数Twinlitenet + Nano。值得注意的是,TwinliteNet +大的达到了92.9%的MIOU(平均交叉路口),用于驱动面积分割,而车道分割的34.2%IOU(与联合的交集)为34.2%。 这些结果实现了能力的性能,超过了当前的最新模型,而仅需少11倍的浮点操作(FLOP)才能计算。 在各种嵌入式设备上进行了严格评估,TwinliteNet +表现出了有希望的LASCENCE和功率效率,从而强调了其对现实世界自动驾驶汽车应用的潜力。 该代码可在https://github.com/chequanghuy/twinlitenetplus上找到。达到了92.9%的MIOU(平均交叉路口),用于驱动面积分割,而车道分割的34.2%IOU(与联合的交集)为34.2%。这些结果实现了能力的性能,超过了当前的最新模型,而仅需少11倍的浮点操作(FLOP)才能计算。在各种嵌入式设备上进行了严格评估,TwinliteNet +表现出了有希望的LASCENCE和功率效率,从而强调了其对现实世界自动驾驶汽车应用的潜力。该代码可在https://github.com/chequanghuy/twinlitenetplus上找到。
第四部分 人员执照 第 0 部分 - 一般规定 400.01 解释 1.在本部分中,“特技飞行” - 指飞机姿态变化导致倾斜角大于 60 度、异常姿态或非正常飞行所导致的异常加速度的机动;“飞机” - 不包括超轻型飞机;“气球” - 包括任何轻于空气的飞机;“考试” - 指人员执照标准要求颁发执照或加签带有等级的执照的任何书面考试或书面实践资格考试;“外国执照验证证书” - 指管理局根据第 401.08 款颁发的证书;“滑翔机” - 包括动力滑翔机; “地面学校教学” - 指通常向一人或多人提供的课堂教学或基于计算机的教学,涵盖按照经批准的培训计划组织的讲座、家庭作业和自定进度学习计划;“监考员” - 指由管理局指定监督书面考试的人员;“主基地” - 指飞行训练机构拥有人员、飞机和设施以运营飞行训练服务的地点,并作为飞行训练机构的主要营业地点;“仪表地面时间” - 指飞行员在经管理局批准的合成飞行教练机上进行地面模拟仪表飞行练习的时间。“仪表飞行时间” - 指飞行员仅参考仪表而不参考外部参考点驾驶飞机的时间。“仪表时间” - 指仪表飞行时间或仪表地面时间。
BeamIt组已开发出AM工艺,用于最高性能的铝合金:AL2024 RAM2C超轻铝合金3D由BeamIt打印的超轻铝合金在高温下表现良好:非常适合在赛车运动,汽车和航空部门应用。fornovo di taro(意大利帕尔马)2021年6月28日 - 每天都有更多的行业转向增材制造业,并投资不断发展的技术,以生产构成构成的组件,这些组件的表现优于那些用传统流程制成的组件。最近,尤其是在赛车领域的需求增加了铝合金,这些铝合金可以将维持高性能水平的能力结合在一起,而不论温度与极重的温度如何。Beamit Group迅速做出响应,Beamit集团总裁Mauro Antolotti说:“我们的首要任务是为客户提供高级材料和流程,以便他们可以直接而轻松地将这些创新转移到其产品上。这种不断发展的进步是我们小组长期战略不可或缺的一部分,并得到了一个强大,组织良好的团队的支持,致力于取得更具竞争力的成果。” 2024 RAM2C铝合金在室温和高温下的添加剂制造生产的过程与Beamit中的参数相比,与当前正在使用的其他合金相比,它在室温和高温下的性能更好,而且它非常艰难,而且非常轻巧。这些特征使其非常适合在赛车运动和汽车领域的应用,以用于悬架,底盘的一部分和动力总成的结构部分,因此基本上是发动机附近的任何部分。改变热处理实际上可以改变材料的性能。使用传统技术处理的合金通常用于飞机的结构部件,但是添加剂制造为航空航天设计的未来开辟了新的视野,从而使能够降低能源消耗和成本的更轻和更高的结构零件。到目前为止,包括2024年在内的2000系列铝合金在AM世界中因其组成而无法通过增材制造加工而闻名。合金(例如铜,锌和镁)中的元素在完全不同的温度下凝固,并且很难用激光融化它们以产生固体元件。该项目的第一步是与Elementum 3D合作:选择与Elementum 3D的AL2024-RAM2C材料打印,这是一种2000系列铝合金组成,并通过获得专利的RAM添加了。最艰巨的挑战是发现合金的理想过程窗口。Beamit Group的研发团队从完全集成的价值链提供的集成过程中受益匪浅,并采用了解决该问题的多学科方法。“ 2024合金完美地体现了我们谈论添加剂过程的综合发展时的意思。已经由一个多学科研究小组和使用独特的机械来研究和应用顶级精确过程,以实现我们的结果,就像在这种情况下一样,我们可以肯定地说,这绝对是非凡的。”铝合金一定需要进行热处理以达到最大的机械性能水平,因此为2024 RAM2C合金定制了一个特定的周期。除了为合金的热周期找到理想的解决方案外,Beamit Group的研发团队开发了不同的后打印过程,使客户能够具有具有自定义属性的模块化解决方案。Beamit组材料和特殊过程经理Alessandro Rizzi解释说:“很难通过L-PBF处理2000系列铝合金,因此开发这种材料确实激发了我们的动力。此外,热处理的作用对于AL2024 RAM2C至关重要,使我们能够试验不同的稳定过程,并保证了最大的性能,包括空气内和HIP-Q处理。”实际上,Beamit组目前正在研究高压热
将航天器发送到我们自己的太阳系中的行星和其他物体的任务几乎已经成为常规。突破性的星际计划旨在将我们的视野扩展到我们自己的太阳系以外的地平线,远离我们最接近的邻居Alpha Centauri System,距离地球有4.2光年[1]。这个巨大的距离意味着即使是迄今为止最快的人造飞机,Parker太阳能探针(预测的最接近太阳方法的最接近光速的最高速度为0.064%),将需要6500年才能到达Al-Pha Centauri。通过化学燃料加速加速的航天器需要在Or-der中携带大量的燃料,以达到接近光速的任何明显部分的速度。一个天然能源来源的自然候选者是光,这是几十年前提出的[3,4]。这是突破性星际计划采取的方法的基本原理。的目的是通过将基于地球的激光阶段阵列加速到光速的20%,将其带有有效载荷的超轻帆艇送到Alpha Centauri [5]。这将使帆可以到达Proxima Centauri并在大约26年内将信号发送回地球;一切都在人类的一生中。帆有望具有约一克的质量,有效载荷包含探测器和电子设备,将信号发送回具有相似质量的地球[6]。在这个宏伟愿景的各个方面都有许多科学和加强挑战,包括激光阵列设计[7],材料选择[6,8],帆在加速下[9],热管理[6,10,11]和通信[12]。差异表明,将帆加速至最终速度的“合理”方案如下[5]:帆的总面积约为10 m 2,净收入激光强度约为10 gw m-2。帆被加速至光速的20%,距离
摘要:最近通过自组装定义的纳米颗粒形成自支持的网络,所谓的Aerogels的宏观材料。以这类材料的有前途的特性动机,搜索通往前聚合的纳米颗粒的多功能路线进入这种超轻宏观材料已成为极大的兴趣。用多功能物的胶体纳米颗粒的过度涂料程序意味着从纳米颗粒中产生气凝胶,无论其大小,形状或性能如何,同时保留其原始特性。在此,我们报告了各种构件的表面修饰和组装:光致发光的纳米棒,磁性纳米球和等离激元纳米管,粒径在5到40 nm之间。用于涂层的聚合物是用1多二烷胺侧链修饰的聚(异丁基 - 甲基甲基酸酐)。聚合物的两亲性促进了水性介质中纳米晶体的稳定性。水凝胶是通过触发胶体稳定的溶液来制备的,水阳离子在聚合物壳的官能团之间充当接头。超临界干燥后,水凝胶成功地转化为具有高度多孔,开放结构的宏观气凝胶。由于非侵入性制备方法,构建块的纳米镜特性保留在整体气凝胶中,从而导致这些特性强大地传递到宏观上。关键字:纳米颗粒,气凝胶,聚合物涂层,相转换,多功能合成方法■简介开放的孔系统,聚合物涂层策略的普遍性以及网络的巨大可访问性使这些凝胶结构有望有希望的生物传感平台。用生物分子功能化聚合物壳可以使利用构建块的纳米镜头特性的可能性渗透到流化的探测,磁性感应感和等离激元驱动的热传感。
完全自主的无人驾驶飞机被定义为“没有远程人类飞行员的预编程的战斗,包括响应运行时观察的任务特定行动” [1]。在2023年首次通过浮游的边缘在超轻无人机上实现这一目标[2]。通过克服板载无人机智能的重量和尺寸限制,即可激发小型,便宜,轻巧但出色的无人机在拥挤的城市环境中运行的无人机,而没有人类飞行员。从公共安全和监管批准的角度来看,这很有吸引力,因为这种无人机的动能远低于较大且重型无人机的动能[3]。从业务角度来看,这也很有吸引力,因为当今无人机操作中最昂贵的部分是训练有素的人类飞行员,他必须持续持续无人机[4]。我们专注于无有效的主动视力任务[5],[6],例如识别和跟踪目标,而不是涉及大量有效载荷的商品交付等任务。在本文中,我们探讨了今天我们距离这一愿景成为商业现实的距离。如果需要一个全新的定制无人机和低延迟无线网络的生态系统,则商业化的途径将是漫长而风险的。另一方面,如果基于Cloudlet的部署具有现有的商业现成(COTS)组件,可以集成到满足现实世界用例的性能和敏捷性需求的工作系统中,那么愿景就可以实现。最初是在1950年代构思的,以表征战斗飞机中的人机共生,这因此,我们问:“使用COTS Ultralight无人机,4G LTE无线网络和Cloudlet硬件,是否适用于现实世界中主动视觉任务的Fload Edge的端到端性能?”为了回答这个问题,我们介绍了无人机Ooda循环的概念。
迄今为止,所有暗物质 (DM) 存在的证据都是通过其与可见物质的引力耦合获得的。另一方面,迄今为止所有对暗物质的直接探测搜索都必须假设与标准模型存在一些额外的耦合,例如 WIMP 的弱核耦合,或轴子的胶子/光子耦合。一个明显可取的目标是直接通过其引力耦合来搜索粒子 DM。最近,有人提出,通过地面实验 [1–3] 可以实现纯引力直接探测策略,尽管这非常具有挑战性。这一想法利用了光学或微波光机械传感设备的量子读出和控制方面令人难以置信的快速进展 [4–6]。这些设备已被证明是一个有前途的平台,可用于搜索大量暗物质候选者 [7],涵盖超轻 [8–11]、轻 [12] 以及 WIMP 级和更重的质量范围 [13]。特别是,参考文献 [14]。 [3] 表明,由至少 10 6 个机械传感器组成的大型阵列,每个传感器的质量在克级左右,可以对质量在普朗克尺度 m Pl ≈ 2 × 10 18 GeV ≈ 4 µg 左右的暗物质的引力特征敏感。有关这些超重暗物质候选者的概述,请参阅 Snowmass 2021 社区白皮书 [14]。在这份 Snowmass 白皮书中,我们概述了一项新兴的实验工作,我们将其称为 Windchime 项目,以开发此类暗物质探测器。核心计划是并行构建和操作许多量子限制机械加速度计阵列。这样的系统将能够独特地搜索大量有趣的信号,而引力暗物质探测是一个非常长期的目标。需要进行许多技术开发,涉及四个关键方面:热隔离、低于标准量子极限的量子测量噪声、传感器数量及其读数的扩展以及来自许多探测器的连续数据流的数据处理和分析技术。在开发这些技术的过程中,将实现许多短期物理机会,并且除了寻找暗物质之外,研发计划还将有大量应用。我们概述了技术挑战、物理机会、我们目前的努力以及实现长期计划的途径。