半导体 在未来几年,半导体制造在污染控制方面将面临多重挑战。对于最先进的晶圆厂来说,所谓的技术节点现在已经达到 20 纳米及以下。简单来说,节点是较小的临界尺寸 (CD),可以通过光刻工艺打印成图案以形成晶体管——任何电子设备中最重要的组件。尺寸越小,信息越密集,微电子设备或存储器的性能就越好。消费者在升级计算机时通常会注意到这一点,处理器速度越来越快或存储器容量越来越大。在这种规模下,AMC 现在已成为许多逻辑或存储器制造工艺的主要关注点,影响产量和质量。所有采用这些最新技术的晶圆厂都需要强制性的 AMC 控制。AMC 过滤器安装在设施系统中以及工具或工具微环境之上。
在检查疫苗功效时,经常像辉瑞(Pfizer-Biontech)和现代研究一样进行双倍的安慰剂对照临床试验。在此类试验中,在几个月内招募了中等或大量的参与者,并随机分配给两个试验组之一(或两个武器),以确保两组之间受试者的可比性。一组称为治疗组,其受试者接受研究疫苗。另一组被称为对照组,其受试者接受安慰剂而没有通用的研究药物,模仿不会接受疫苗治疗的社区的人口。然后计算出功效为(1 -𝑅𝑅),𝑅𝑅是风险比,疫苗组的疾病率与对照组𝑅𝑅𝑅𝑢𝑅。因此,相对于未接种疫苗的接种疫苗之间的速率越小(𝑅 /𝑅),疫苗功效越高(1 -𝑅𝑅)[2]。
芯片贴装是集成电路 (IC) 封装工艺中最关键的工艺之一。过去几年,芯片厚度越薄,漏源导通电阻 RDS(on) 越小,顶部金属和焊盘之间的硅电阻越低,散热性能越好,堆叠封装厚度越薄,重量越轻,这些要求就越高。这种三维技术代表了封装创新的下一波浪潮,并将在未来几年内实现大幅增长 (Ibrahim 等人,2007 年)。这些趋势对现有的电子封装技术(主要是芯片拾取工艺)提出了相当大的挑战。必须特别注意处理更薄芯片的工艺,以确保半导体产品的可靠性和质量 (Huiqiang 等人,2015 年;Carine 等人,2014 年)。
摘要 建立了非均匀应力场下隧洞开挖力学模型,提出了一种同时考虑黏聚力和内摩擦角弱化的应变软化模型,推导了峰后区半径、应力与位移的解析解。以桃园煤矿某隧洞为工程实例,确定了隧洞峰后区半径、地表位移和应力分布情况,讨论了平竖应力比、中间主应力、残余黏聚力、残余内摩擦角对隧洞变形的影响。研究结果表明:由于应力场不均匀,隧洞周边峰后区半径和应力分布随方向呈变化趋势;考虑中间主应力时,隧洞峰后区半径和地表位移较大;残余黏聚力和内摩擦角越大,隧洞峰后区半径和地表位移越小。
由于最近的实证研究进展,我们现在了解到,儿童在高贫困环境中生活的时间越长,他们成年后收入水平上升的可能性就越小。1 地方通过学校质量、暴力接触、污染和社会影响等渠道塑造儿童的未来。2 社会方面尤其重要,最近的研究表明,促进跨阶级联系的地方更能提高居民的收入向上流动性。3 虽然地方对经济结果的因果影响对成年人来说似乎较弱,4 但生活在贫困地区会通过无数途径阻碍人类的繁荣。靠近环境危害5、更容易遭受暴力6 和更差的健康状况7 只是生活在高贫困社区会伤害儿童和成年人的一些方式。一般而言,贫困率与其他社会经济指标高度相关;贫困率高的地方,人口通常会在多个方面遭受苦难。
本文旨在评估一种自热测试方法,用于表征单道厚度增材制造试件的疲劳性能。它还评估了微观结构取向相对于载荷方向对耗散行为和微裂纹起始的影响。所研究的 316L 不锈钢试件采用定向能量沉积技术制造,有两种配置:(i) 完全打印试件(2 个取向)和 (ii) 修复试件。本文首先介绍形态学和晶体学纹理分析,其次介绍一系列循环载荷下的自热测试。微观结构分析显示,晶粒伸长,其尺寸、形状和优选取向由工艺参数控制。循环拉伸载荷下的自热测量证明,可以通过红外测量对小规模、薄试件进行耗散估算。自热曲线可以成功地用 Munier 模型表示。此外,可以建立打印参数和自热结果之间的几种联系。例如,连续沉积层之间的垂直增量越小,平均
光导板(LGP)是一个不可或缺的组件,可帮助从各种应用中从光源中分发照明。因此,LGP中微观结构模式的设计和质量在实现高发光效率和光均匀性方面起着重要作用。这项研究调查了使用CO 2直接激光结构在PMMA上使用CO 2直接激光结构,激光功率与激光扫描速度与微点形成之间的关系。此外,还使用亮度计评估了不同微点音高对亮度的影响。我们的发现表明激光功率的增加和激光扫描速度的降低导致较大的微点直径和更深的微点。结果还表明,音高越小,亮度读数越高。总体而言,研究中证明的低成本CO 2直接激光结构能够产生一致的微点模式直径和高度,这适用于质量产生中LGP的制造。
在介绍参考帧纠错任务 [ 1 ] 之后,我们展示如何通过使用参考帧与时钟对齐,将一组连续的阿贝尔横向逻辑门添加到任何纠错码中。据此,我们进一步探索一种绕过 Eastin 和 Knill 的无行定理的方法,该定理指出,如果局部错误是可校正的,则横向门组必须是有限阶的。我们可以通过在解码过程中引入一个小错误来做到这一点,该错误随着所用帧的维数而减小。此外,我们表明,这个误差有多小与量子钟的精确度之间存在直接关系:时钟越精确,误差越小;如果时间可以在量子力学中完美测量,则会违反无行定理。在多种参考系和误差模型的场景下研究了误差的渐近缩放。该方案还扩展到未知位置的误差,我们展示了如何通过参考系上的简单多数投票相关误差校正方案来实现这一点。在展望中,我们讨论了与 AdS/CFT 对应和 Page-Wooters 机制相关的结果。
早期发展 1 尽管摄影测量法使用照片(或当今的数字图像)进行测量,但其概念的历史可以追溯到更早。1480 年,列奥纳多·达·芬奇写下了以下内容:“透视无非就是在玻璃后面看到一个物体,这块玻璃光滑而透明,在玻璃表面上可以标记出玻璃后面的所有事物。所有事物都通过金字塔线将其图像传递给眼睛,这些金字塔被上述玻璃切割。这些金字塔相交的位置离眼睛越近,其图像就越小” [Doyle,1964]。1492 年,他开始研究透视和中心投影,并发明了魔灯 2 [Gruner,1977],尽管没有证据表明他实际上建造了一个工作模型,有人声称该设备实际上可以追溯到早期希腊人。透视和射影几何的原理构成了摄影测量理论发展的基础。达芬奇的许多同代艺术家都为
创造、生产、销售和交付产品或服务所涉及的无数活动是竞争优势的基本单位。运营效率意味着比竞争对手更好地完成这些活动(即更快、投入和缺陷更少)。公司可以从运营效率中获得巨大优势,正如日本公司在 20 世纪 70 年代和 80 年代通过全面质量管理和持续改进等实践所展示的那样。但从竞争的角度来看,运营效率的问题在于最佳实践很容易被模仿。随着行业中的所有竞争对手都采用这些实践,生产率边界(即公司在给定成本、采用最佳可用技术、技能和管理技巧的情况下能够提供的最大价值)向外移动,从而降低成本并同时提高价值。这种竞争会产生运营效率的绝对提高,但不会给任何人带来相对提高。公司进行的基准测试越多,竞争趋同性就越强,也就是说,公司之间的区别就越小。