量子跳跃是通常与测量相关的属性。量子跳跃发生。量子跳跃通常是通过物理不连续性建模的,在冯·诺伊曼理论中,这种跳跃在不确定性上或统计上发生。普朗克在1900年的动作中发现了Bohr和其他人的解释,以及其他需要非毒物或非确定过程来解释各种现象,例如黑体辐射。许多研究人员似乎只有在Schrödinger的方程式后才提出的量子跳跃的印象。也就是说,量子跳是统计出生规则和随后的哥本哈根解释的产物。这在历史上是不准确的:量子理论中固有的不连续作用被认为是量子量的属性,并且在发现Schrödinger方程之前就已经是波粒二元性问题的属性。例如,Born是指1927年的能量跳跃,一如既往地被视为基本支柱[181]
摘要。研究人员和行业之间的共识指出,缺乏大型,代表性的注释数据集是手术数据科学领域进步的最大障碍。自我监督学习(SSL)的进步代表了一个解决方案,通过提供任务不合时宜的初始化来降低对大型标记数据集的依赖。然而,当前的自我监督学习方法对领域转移的鲁棒性尚不清楚,从而限制了我们对利用多种外科数据来源的效用的理解。将焦点从方法转移到数据,我们证明了基于SSL的初始化的下游值与预训练数据集的组成无关紧要。这些结果强调了一个重要的差距,当我们扩展自我监督的方法以构建通用的“ Foun-Dation模型”时,需要填补这一差距,该方法可以在手术领域内进行多种用例。通过受控实验的几个阶段,我们开发了预处理数据集组成的建议,这些数据集组成通过300多个实验,涵盖20个预训练数据集,9个手术程序,7个中心(医院),3个标签DATA设置,3个下游任务以及多次运行。使用此处描述的方法,我们在两个公共基准测试中均优胜于阶段识别的预先培训:cholec80上的2.2%,自动帕拉的培训最高为5.1%。
摘要 - 2020年代,Artemis计划致力于将人类降落到月球上,从而在十年末实现了可持续的月球存在。,要向月球表面提供大量有效载荷,以支持当前可用的地球发射系统的这些目标。发射系统的有效载荷能力限制了月球着陆器的大小,从而限制了其货物容量。幸运的是,如果多个着陆器在太空中融合在一起,则可以显着提高着陆器货物的能力。此概念以前已被引入为可加入的底盘,以最大程度地提高有效载荷(跳跃)着陆器。利用跳跃着陆器系统将增加选择权,并使遵守白宫高级领导层发出的指令更加容易发起月球上的长期活动。从定义上讲,这种活动意味着广泛的居住,流动性,研究和资源发展能力,进而要求大量批量交付到月面。本文开发了跳跃着陆器的三个概念插图变体。这些概念探索高光,氢和甲烷推进剂选择,以及实现此类着陆器概念所需的功率和热排斥系统。本文还估计了必要的航空电子,结构和机械子系统的质量。纸张记录了所得的配置,并建议跳跃着陆器在进一步开发中进行。
免费CS是终极的多合一解决方案,可以快速为平板电池供电,并使您的车辆电池保持峰值状态。自适应提升:说再见,跳线和跳跃起动器包。cs迅速,安全地迅速加强您的平板电池,而不会损坏电池或车辆电子设备的风险。充电和维护:无论您是连接到电源电源,还是离网上,CS免费,可以使您的电池保持最佳状态。为您提供充电和维护任何12V铅酸或锂电池的自由,同时利用电源电源,太阳能电池板或单独的休闲电池,CS免费处理了所有电池充电需求。高科技电力库:超出车辆需求,CS免费双打作为高科技电源库,可以在需要时为USB设备充电,以确保您始终在旅途中连接。
图6(a)低频疲劳(20 Hz至100 Hz电刺激的扭矩)和log 10转换的CFDNA,n = 14。(b)MVIC扭矩与log 10转化的CFDNA之间的相关性。(c)P20扭矩与log 10转换的CfDNA之间的相关性,n = 14。(d)P100扭矩与log 10转换CfDNA之间的相关性,n = 14。(e)log 10转换的CK和log 10转换CFDNA之间的相关性,n = 14。(f)DOMS与log 10转化的CFDNA之间的相关性,n = 14。线表示线性趋势。相关和R值的重要性显示在图表上。缩写:CFDNA,无细胞DNA; CK,肌酸激酶; DOMS,延迟发作的肌肉酸痛; MVIC,最大的自愿等距收缩; p20,20 Hz的1 s刺激; p100,1 s刺激在100 Hz时。
长期以来一直在寻求二维(2D)狄拉克半学和随之而来的超导性,但很少报道。据信,由于其内在的轻质和金属性,光元素材料有可能实现这一目标。在这里,基于最近合成的β12氢化唯一的唯一苯二酚,我们研究了其名为β12 -b 5 h 3的对应物。我们的第一个原理计算表明它具有良好的稳定性。β12-b 5 H 3是一个稀缺的狄拉克半学,表明了从三个狄拉克锥到单个狄拉克锥的应变可调相变。此外,β12-B 5 H 3也是一种上语音介导的超导体,超导临界温度为32.4 k,并且在外部应变下可以进一步提高到42 K。补充了双重可调性的狄拉克费米和超导性的同意,揭示了β12-b 5 h 3是一个有吸引力的平台,可以在2D DIRAC半学或超导性或超级传导性或相互作用带来的外来物理学中研究量子相变。
在纽约州罗切斯特大学微生物学和免疫学系的雅克·罗伯特博士的实验室(https://wwwwwwwww.urmc.rochester.edu/labs/labs/robert.aspx)中,可以在博士学和免疫学系实验室中获得使用两栖动物作为实验生物,对病原体(例如病毒和分枝杆菌)的耐产生免疫反应。 该项目涉及基因组学,转录组学,重组蛋白设计和表达,以及反向遗传方法(CRISPR/CAS9基因组编辑和转化的RNA干扰)以及插入式成像。 候选人将有机会参与学生的监督和Xenopus laevis研究资源的管理(https://www.urmc.rochester.edu/mbi/mbi/resources/xenopus-laeevis/)。使用两栖动物作为实验生物,对病原体(例如病毒和分枝杆菌)的耐产生免疫反应。该项目涉及基因组学,转录组学,重组蛋白设计和表达,以及反向遗传方法(CRISPR/CAS9基因组编辑和转化的RNA干扰)以及插入式成像。候选人将有机会参与学生的监督和Xenopus laevis研究资源的管理(https://www.urmc.rochester.edu/mbi/mbi/resources/xenopus-laeevis/)。