摘要 - Koopman操作员理论提供了严格的动力学处理,并已成为一种强大的建模和基于学习的控制方法,从而实现了在机器人技术各个领域的重要进步。由于其能够代表非线性动力学作为线性操作员,Koopman理论提供了一种新鲜的镜头,可以通过它来理解和应对复杂机器人系统的建模和控制。此外,它可以启用增量更新,并且在计算上是廉价的,使其对实时应用程序和在线积极学习特别有吸引力。本评论全面介绍了有关跨机器人技术领域的Koopman操作员理论的最新研究结果,包括空中,腿部,轮子,水下,软体和操纵器机器人技术。更重要的是,它提供了实用的教程,以帮助新用户开始,并提供更高级的主题的论文,从而导致对未来的方向和开放研究问题的前景。综上所述,这些提供了对Koopman理论的潜在演变的见解,该理论应用于机器人技术领域。
细胞转录和表型对细胞转录和表型的表观遗传控制受到细胞微环境的变化的影响,但是这些微环境的机械提示如何精确影响表观遗传态来调节转录状态,这在很大程度上仍未覆盖。在这里,我们结合了基因组 - 表观基因组分析,表观基因组编辑以及表型和单细胞RNA-SEQ CRISPR筛选,以鉴定一类新的基因组增强剂,以对机械微环境做出反应。这些“机械性元素”可以在软体或僵硬的细胞外基质环境上活跃,并调节转录以影响关键细胞功能,包括凋亡,机械转导,增殖和迁移。在刚性材料上的机械性材料的表观遗传编辑将基因表达调整为在较软的材料上观察到的水平,从而重新编程了对机械微环境的细胞反应。这些编辑方法可以使机械驱动的疾病状态的精确改变。
人工控制动物运动有可能同时解决软体机器人长期以来在驱动、控制和功率要求方面的挑战。机器人对运动的操纵还可以解决以前无法解决的生物生物学问题,否则这些问题仅限于观察自然发生的行为。在这里,我们展示了一种生物混合机器人,它使用机载微电子设备来诱导活水母游泳。测量表明,通过以比自然行为更快的最佳频率范围驱动身体收缩,可以大大增强推进力。游泳速度可以提高近三倍,而动物的代谢消耗仅增加两倍,微电子设备的外部功率输入为 10 mW。因此,这种生物混合机器人每单位质量使用的外部功率比文献中报道的其他水上机器人少 10 到 1000 倍。这种能力可以扩大生物混合机器人相对于自然动物的性能范围,用于海洋监测等应用。
在基于液晶弹性体 (LCE) 的刺激响应材料的潜在应用中,开发不受束缚的软致动器是最具吸引力的应用之一。[1–4] 例如,在软体机器人中[5–8] 以及在微流体和仿生设备中,[9,10] 含有光活性分子的光响应性 LCE 聚合物已得到广泛应用。[11,12] 与温度和湿度等其他刺激相比,光作为不受束缚的刺激物的好处是时空控制、可调性和直接应用。[13–15] 因此,开发基于可聚合 LCE 材料的光驱动致动器的努力已成为一个成熟的研究课题,为将光转化为机械运动奠定了宝贵的基础。 [16,17] 偶氮苯衍生物是目前 LCE 执行器中最突出的光开关,因为它们易于加入,并且能够实现快速、可逆响应的远程控制驱动。[18,19] 然而,通常需要液晶 (LC) 材料的光聚合才能获得可逆的形状变化。[20,21] 这种光诱导交联过程非常耗时,而且高效固化具有挑战性,而偶氮苯部分的不良异构化则进一步阻碍了这一过程。[22]
基于视觉的机器人布的展开最近取得了巨大进步。但是,先前的工作主要依靠价值学习,并且没有完全探索基于政策的技术。最近,在大型语言模型上进行增强学习的成功表明,该政策级别算法可以通过庞大的空间来增强政策。在本文中,我们介绍了Bloth-PPO,该框架采用了基于演员批判性建筑的策略级别算法,以增强具有巨大的10 6个附加空间的预训练模型,该模型与观察到的任务相符。为此,我们将布置问题重新定义为部分观察到的马尔可夫决策过程。使用监督的培训阶段来培训我们政策的基准模型。在第二阶段,近端政策优化(PPO)用于指导观测一致的附属空间内的套头文模型。通过优化和更新策略,我们提出的方法增加了服装的表面积,以在软体操纵任务下展开的布料。实验结果表明,我们提出的框架可以进一步改善其他最先进方法的展开性能。我们的项目可从https:// vpx- ecnu.github.io/clothppo-website/获得。
应用力学和数据分析(AMDA)组的研究集中在基于非线性物理学的模型与数据的无缝集成。我们的重点是系统(结构),组件及其元素的非线性动力学建模,例如见图1。特殊兴趣是向机器人技术和高科技机器中的刚体和软体动力学支付的,以及在不确定性和未知接口的存在下的系统/结构动力学(触点),请参见图。2。这些模型随着设计参数的变化而增强,目的是针对机械安全系统/机器的最佳设计。为了预测机械成分的老化,我们着重于宏观,中,微结构水平上发生的损伤机制的建模和实验研究,请参见图1和图4。由于这些基本上是由于无法完全控制制造过程而发生的变化的特征,因此我们以不确定性增强的非线性机械模型扩展了动力学模型。重点是复合材料,例如热塑性复合材料和混凝土。开发的描述还包括缺乏有关材料/机器状态或边界/激发条件的专家知识。接下来,在我们的小组中,我们还拥有有关声学的主动噪声控制和建模的专业知识,请参见图3。
记录季节性温度周期是减轻与未来温暖世界中极端天气事件相关的风险的重要一步。中期温暖时期(MPWP),3.3至3.0 milion,特征是工业前水平高约3°C的全球温度。它代表了定向古气候重建的理想时期,等效于在中等共享的社会经济途径SSP2-4.5下对2100的模型预测。在这里,向北海的化石软体壳进行了季节性团块的同位素分析,以测试上新世模型的比较项目2结果。联合数据和模型证据显示,与冬季相比,MPWP期间( + 2.5°±1.5°C)增强了夏季变暖( + 4.3°±1.0°C),相当于未来气候的SSP2-4.5结果。我们表明,全球变暖的北极扩增会削弱中纬度的夏季循环,同时加强了温度和降水的季节对比度,从而增加了夏季热浪和欧洲未来其他极端天气事件的风险增加。
记录季节性温度周期是减轻与未来温暖世界中极端天气事件相关的风险的重要一步。中期温暖时期(MPWP),3.3至3.0 milion,特征是工业前水平高约3°C的全球温度。它代表了定向古气候重建的理想时期,等效于在中等共享的社会经济途径SSP2-4.5下对2100的模型预测。在这里,向北海的化石软体壳进行了季节性团块的同位素分析,以测试上新世模型的比较项目2结果。联合数据和模型证据显示,与冬季相比,MPWP期间( + 2.5°±1.5°C)增强了夏季变暖( + 4.3°±1.0°C),相当于未来气候的SSP2-4.5结果。我们表明,全球变暖的北极扩增会削弱中纬度的夏季循环,同时加强了温度和降水的季节对比度,从而增加了夏季热浪和欧洲未来其他极端天气事件的风险增加。
摘要:提高绿色供应链的有效性是最大程度地减少废物,优化资源使用并减少业务运营对环境影响的关键一步。为了实现这些目标,应在整个供应链中实施可持续实践。这样做,企业不仅可以提高环境绩效,而且可以降低成本,提高客户满意度并在市场上获得竞争优势。但是,由于存在竞争特征,不精确的信息以及缺乏知识,因此选择适当的绿色提供商是一个复杂且无法预测的决策问题。线性二磷酸化(LIDF)框架的主要目标是帮助决策者选择最佳的行动过程。本文介绍了几个新型聚合操作员(AOS),即线性双苯胺模糊软性最大含量平均值(LIDFSMA)和线性双苯胺模糊软性软体几何(LIDFSMG)操作员。然后通过一个简单的示例来证明所提出的方法的绿色供应商优化技术,该技术包含线性双磷灰石模糊含量,显示了该方法的实用性和适用性。总体而言,拟议的LIDF框架和AOS可以帮助决策者选择最合适的绿色提供商,从而提高绿色供应链的效率。
摘要:纳米晶钙碳酸钙(CACO 3)和无定形可CACO 3(ACC)是越来越多的技术兴趣的材料。如今,它们主要是由稳定剂存在的Caco 3试剂湿反应产生的。 但是,最近发现可以通过计算机来产生ACC。 方解石和/或arogonite是由ACC前体形成的软体壳的矿物相。 在这里,我们调查了以潜在的工业规模转换的可能性,即从废物软体动物贝壳中转换为纳米晶体Caco 3和ACC的生物性可可3(BCC)。 使用了水产养殖物种的废物贝壳,即使用牡蛎(Crassostrea gigas,低毫克方解石),扇贝(Pecten jacobaeus,Medive-mg方解石)和蛤(Chamelea Gallina,Aragonite)。 通过使用不同的分散溶剂和潜在的ACC稳定剂来进行球铣削过程。 使用了结构,形态和光谱表征技术。 结果表明,机械化学过程产生了晶体域大小和ACC结构域的形成的降低,而ACC域的形成是在微覆盖骨料中共存的。 有趣的是,BCC的行为与地球CACO 3(GCC)的行为不同,在较长的铣削时间(24小时)时,ACC重新延伸为结晶阶段。 在机械化学处理的BCC的各种环境中的衰老产生了方解石和aragonite的混合物,以特异性的质量比,而GCC的ACC仅转化为方解石。 ■简介如今,它们主要是由稳定剂存在的Caco 3试剂湿反应产生的。但是,最近发现可以通过计算机来产生ACC。方解石和/或arogonite是由ACC前体形成的软体壳的矿物相。在这里,我们调查了以潜在的工业规模转换的可能性,即从废物软体动物贝壳中转换为纳米晶体Caco 3和ACC的生物性可可3(BCC)。使用了水产养殖物种的废物贝壳,即使用牡蛎(Crassostrea gigas,低毫克方解石),扇贝(Pecten jacobaeus,Medive-mg方解石)和蛤(Chamelea Gallina,Aragonite)。通过使用不同的分散溶剂和潜在的ACC稳定剂来进行球铣削过程。使用了结构,形态和光谱表征技术。结果表明,机械化学过程产生了晶体域大小和ACC结构域的形成的降低,而ACC域的形成是在微覆盖骨料中共存的。有趣的是,BCC的行为与地球CACO 3(GCC)的行为不同,在较长的铣削时间(24小时)时,ACC重新延伸为结晶阶段。在机械化学处理的BCC的各种环境中的衰老产生了方解石和aragonite的混合物,以特异性的质量比,而GCC的ACC仅转化为方解石。■简介总而言之,这项研究表明,BCC可以产生纳米晶CaCO 3和具有物种特异性特征的ACC复合材料或混合物。这些材料可以扩大从医学到材料科学的CACO 3的应用程序的广泛领域。