在仅12年的时间内发现了前蛋白转化酶枯草蛋白/Kexin型9型(PCSK9)及其转化为批准的治疗靶标,这突出了如何将遗传学见解用于智能治疗创新。1–3旅程始于2003年,当时Abifadel等人。发现了一群具有常染色体显性高胆固醇血症的法国人,在典型家族性高胆固醇基因中没有突变(例如,LDL受体[LDLR]和载脂蛋白B100 [APOB])。4后来发现这些人在PCSK9中具有功能突变,现在被理解为胆固醇稳态的关键调节剂。4作为PCSK9功能增益突变导致LDL胆固醇(LDL-C)的惊人升高,可以想象PCSK9中的功能损失(LOF)突变会导致LDL-C水平很低。 Cohen和Hobbs在达拉斯心脏研究中调查了这一假设,通过对LDL-C非常低(定义为<58 mg/dl)的PCSK9进行测序。5研究者发现,那些无义突变(Y142X和C679X)导致PCSK9 LOF的人将LDL-C降低40%。5在ARIC队列中也进行了类似的研究,其中PCSK9(Y142X和C679X)中的无意义LOF突变在2.6%的黑人参与者中发现,PCSK9(R46L)的序列变化发生在3.2%的白人参与者中,对应于LDL-C-C的3.2%,相对于LDL-C降低了28%和15%的相应。6此外,这些中等的LDL-C中的这些适度减少转化为黑色和
脂蛋白的放置(LA)目前是最强大的不断措施,可在家族性高胆固醇血症和脂蛋白(a)高脂血症患者中最大程度地降低脂质。尽管LA是一种侵入性方法,但它几乎没有副作用,并且可以防止进一步的重大心血管事件。已经提出,LA所实现的严重脂质疾病的患者心血管并发症的高度显着降低不仅是由于脂质水平的有效降低而介导的,而且还通过去除其他促炎和促孕激素质地因素而介导。在这里,我们使用了一组使用刺激性系统的一组不同尺寸的尺寸的放置滤波器对LA治疗的患者进行了全面的蛋白质组学分析。这项研究表明,蛋白质组学分析与这些患者的常规临床化学息息相关。该方法非常适合发现这些患者的新生物标志物和心血管疾病的危险因素。不同的过滤器可减少和去除不同量的促孕激素蛋白。这不仅包括载脂蛋白,C反应蛋白,纤维蛋白原和纤溶酶原,而且还包括诸如补体因子B(CFAB),蛋白AMBP,AFAMIN和低亲和力免疫球蛋白γFC区域受体III-A(FCγRIIIA)等诸如补体因子B(CFAB),蛋白质ABP,AFAMIN和低亲和力。 TOR。因此,我们得出的结论是,应根据其代谢和血管风险预科生成LA的患者开发未来的试验,以开发一种个性化的治疗方法。此外,这种级联过滤器处理方案的功能可以改善心脏代谢疾病及其并发症的预防。
脂质纳米粒子 (LNP) 已成功进入临床,用于递送基于 mRNA 和 siRNA 的治疗方法,最近又被用作 COVID-19 疫苗。然而,人们对其在体内的行为,特别是细胞靶向性缺乏了解。LNP 的向性部分基于内源性蛋白质对粒子表面的粘附。这种蛋白质形成所谓的冠,可以改变这些粒子的循环时间、生物分布和细胞摄取等。反过来,这种蛋白质冠的形成取决于纳米粒子的特性(例如大小、电荷、表面化学和疏水性)以及它所来源的生物环境。由于基因治疗有可能针对几乎任何疾病,因此人们正在考虑除静脉途径之外的其他给药部位,从而产生组织特异性蛋白质冠。对于神经系统疾病,颅内注射 LNPs 会产生脑脊液衍生的蛋白质冠,与静脉注射相比,这可能会改变脂质纳米颗粒的性质。在这里,我们在体外研究了临床相关的 LNP 制剂中血浆和脑脊液衍生的蛋白质冠之间的差异。蛋白质分析表明,在人脑脊液中孵育的 LNPs (C-LNPs) 产生的蛋白质冠组成与在血浆中孵育的 LNPs (P-LNPs) 不同。脂蛋白作为一个整体,特别是载脂蛋白 E,在 C-LNPs 上占总蛋白质冠的百分比高于 P-LNPs。这导致与 P-LNPs 相比,C-LNPs 的细胞摄取有所改善,无论细胞来源如何。重要的是,更高的 LNP 摄取量并不直接转化为更有效的货物输送,强调有必要进一步评估此类机制。这些发现表明,生物流体特异性蛋白质冠会改变 LNP 的功能,这表明给药部位可能会影响 LNP 在体内的功效,并且需要在配方开发过程中加以考虑。
1 GLP-1 RA / SGLT2i:应按已证实具有血管保护作用的剂量给药。加拿大卫生部未批准用于 1 型糖尿病。2 请参阅加拿大心血管协会 (CCS) 脂质指南,了解其他必要的疗法。如果脂质目标未达到,则调整剂量,例如 LDL-C ≤2.0 mmol/L(非 HDL-C ≤ 2.6 mmol/L,载脂蛋白 B ≤ 0.8 g/L);或者,患有 ASCVD,LDL-C ≤1.8 mmol/L(非 HDL-C ≤2.4 mmol/L,apo B ≤0.7 g/L)3 应以已证明具有血管保护作用的剂量给予 ACE 抑制剂或 ARB(例如,培哚普利 8 mg 每日一次 [EUROPA 试验]、雷米普利 10 mg 每日一次 [HOPE 试验]、替米沙坦 80 mg 每日一次 [ONTARGET 试验])。4 ASA 不应常规用于糖尿病患者心血管疾病的一级预防。ASA 可用于二级预防。如果不耐受 ASA,可考虑使用氯吡格雷。5 吸烟;血脂异常(使用脂质调节疗法或有记录表明未经治疗的 LDL ≥3.4 mmol/L 或 HDL-C 男性 <1.0 mmol/L 和女性 <1.3 mmol/L,或甘油三酯 ≥2.3 mmol/L);或高血压(使用降压药或未经治疗的 SBP ≥140 mm Hg 或 DBP ≥90 mmHg);中心性肥胖 6 患有 2 型糖尿病的成人 7 TC > 5.2 mmol/L、HDL-C < 0.9 mmol/L、高血压、白蛋白尿、吸烟
缩写:Alt,丙氨酸氨基转移酶;猿,苹果多酚提取物; apoe /,载脂蛋白E; AST,天冬氨酸氨基转移酶; BMI,体重指数; BW,体重; CD,克罗恩病; CRC,结直肠癌; CRP,C反应蛋白; CTR,控制; DGGE,变性梯度凝胶电泳; DP,聚合程度; DSS,硫酸葡萄糖钠; EGCG,epigallocatechin Gallate; EGCG3-ME,Epigallocatechin 3- O-(3- O-甲基)透足; f,分数; f/b,企业/杀菌剂; GMCSF,粒细胞巨噬细胞群刺激因子; GRO,生长调节的癌基因; GSPE,葡萄种子原腺苷提取物; GTE,绿茶提取物; HBA1C,血红蛋白A1C; HFD,高脂饮食; HFHSD,高脂高蔗糖折叠; HTS,高通量测序; IBD,炎症性肠病;国际益生菌和益生元科学协会Isapp; LDLR /,LDL受体缺陷; LFD,低脂饮食; LPS,脂多糖; MCD,蛋氨酸 - 胆碱缺乏;大都会,代谢综合征; NAFLD,非酒精性脂肪肝病;纳什,非酒精性脂肪性肝炎; PACS,低聚蛋白酶蛋白; PCR-DGGE,聚合酶链反应构成梯度凝胶电泳; PFE,pyracantha fortuneana果实提取物; PPEP,果皮桃萃取的多酚; SASP,磺胺丙嗪; SCFA,短链脂肪酸; TLR4,像受体4一样收费; TMAO,三甲胺-N-氧化物; TNB,2,4,6-三硝基苯磺酸; TPC,总多酚的含量; UC,溃疡性结肠炎; w/v,重量/体积。
在预防动脉粥样硬化心血管疾病(ASCVD)中,血液低密度脂蛋白胆固醇(LDL-C)水平越高,越好,越越好。换句话说,LDL-C水平是因果标记。另一方面,低血液高密度脂蛋白胆固醇(HDL-C)的水平通常很差,但过高的水平不一定很好。此外,在接受LDL-C降低疗法的患者中增加HDL-C水平的治疗并不一定会减少ASCVD。因此,HDL-C已从其荣誉位置被删除为“良好的胆固醇”,而HDL-C水平现在被认为仅仅是标记1)。胆汁固醇酯转移蛋白(CETP)抑制剂似乎通过增加HDL而失去了“ ASCVD预防剂”的形象。但是,他们里面仍然有生命!临床试验和孟德尔随机分析的结果将注意力集中在CETP抑制剂的策略上,不仅可以增加HDL,还要减少载脂蛋白B(APOB)含有含脂蛋白,这导致了它们作为LDL降低剂的发育。由于CETP将HDL颗粒中的胆固醇酯转移到非常低密度脂蛋白(VLDL)中的含APOB的脂蛋白和甘油三酸酯中,因此其抑制作用减少了含有蛋白蛋白的胆固醇的含量。在本期刊中,Harada-Shiba等人。研究了102名日本受试者在双盲,随机,受控的II期试验中,在102名日本受试者中,CETP抑制剂的功效,安全性和耐受性。与安慰剂组相比,持续时间为8周,肥胖剂量为2.5、5和10 mg/天。药代动力学。所有患者已经接受了他汀类药物治疗(Atorvastatin 10或20 mg/天或rosuvastatin 5或10 mg/天),使研究设计
(Cytiva)。LNP 货物是编码工程 AsCas12a 核酸酶和 gRNA 的 mRNA,重量比为 1:1。通过 RiboGreen 测定法(ThermoFisher Scientific)评估 LNP 的包封率大于 80%,多分散性指数 (PDI) <0.2,通过 Zetasizer 分析(Malvern Panalytical,型号 ZSU3205)评估平均直径大小 <105 nm。• 细胞培养处理:用指定浓度的包封 AsCas12a mRNA 的 LNP 处理细胞,并在转染后 72 小时分离 gDNA。原代人肝细胞 (PHH) 的转染包括重组人载脂蛋白 E。进行基于扩增子的下一代测序 (NGS) 以确定编辑百分比。 • 小鼠眼内体内编辑:通过前房内注射将 LNP 递送至每只 hMYOC Y437H(具有 Y437H 突变的人类肌动蛋白基因)敲入小鼠的一只眼中。注射后一周,解剖眼球,从前房分离 mRNA。采用基于转录本的 RT-ddPCR 检测来测量剩余 hMYOC mRNA 的程度。 • 小鼠肝脏内体内编辑:通过尾静脉静脉注射将 LNP 递送至 hMYOC Y437H 小鼠。注射后一周,解剖肝脏,分离 gDNA,并进行基于扩增子的 NGS 以确定编辑百分比。 • 体外结合亲和力测量:将标记的未修饰的向导与重组工程 AsCas12a 和浓度不断增加的修饰“测试”向导混合,在室温下孵育 3 小时,然后在硝酸纤维素印迹膜 (Cytiva) 和 Hybond N+ 膜 (Cytiva) 上进行双重过滤分离。在每个膜上定量荧光标记的未修饰向导,并计算结合的未修饰向导的百分比。标记的未修饰向导的结合百分比降低是由于来自修饰的“测试”向导的结合竞争。
是载脂蛋白Eε4(APOEε4)纯合子(约15%的阿尔茨海默氏病患者)接受此类药物治疗的患者(包括Leqembi)的患者具有较高的芳香芳烃的发生率,包括症状,严重和严重的射线照相室,与异性疾病和非杂质者相比。对APOEε4状态的测试应在开始治疗之前进行,以告知患ARIA的风险。在进行测试之前,处方者应与患者讨论跨基因型芳香的风险以及基因检测结果的含义。处方者应告知患者,如果未进行基因型测试,仍然可以用Leqembi对其进行治疗。但是,无法确定它们是否是ApoEε4纯合子,并且芳香的风险更高[请参见警告和预防措施(5.1)]。考虑Leqembi对治疗阿尔茨海默氏病的好处,以及决定启动Leqembi治疗时与ARIA相关的严重不良事件的潜在风险[请参见警告和预防措施(5.1)(5.1)和临床研究(14)]。1指示和使用leqembi用于治疗阿尔茨海默氏病。应在轻度认知障碍或轻度痴呆阶段的患者中开始对LEQEMBI进行治疗,这是在临床试验中开始治疗的人群。2剂量和给药2.1患者选择在开始治疗之前证实存在淀粉样蛋白β病理学[见临床药理学(12.1)]。如果错过了输注,请尽快给予下一个剂量。2.2剂量指示建议的leqembi剂量为10 mg/kg,必须稀释,然后在大约一小时,每两周一次作为静脉输注。
摘要简介:遗传性载脂蛋白 A-I (AApoAI) 淀粉样变性是一种罕见的异质性疾病,发病年龄和器官受累各不相同。很少有系列文章详细介绍了一系列致病性 APOA1 基因突变的实体器官移植的自然史和结果。方法:我们确定了 1986 年至 2019 年期间在国家淀粉样变性中心 (NAC) 就诊的所有 AApoAI 淀粉样变性患者。结果:总共确定了 57 名患有 14 种不同 APOA1 突变的患者,包括 18 名接受肾移植的患者(5 例肝肾联合 (LKT) 移植和 2 例心肾联合 (HKT) 移植)。发病年龄中位数为 43 岁,从发病到转诊的中位数时间为 3(0 – 31 年)。81%、67% 和 28% 的患者检测到淀粉样蛋白累及肾脏、肝脏和心脏。肾淀粉样变性普遍与最常见的变异 (Gly26Arg, n ¼ 28) 有关。在所有变异中,肾淀粉样变性患者在诊断为 AApoAI 淀粉样变性时肌酐中位数为 159 m mol/L,尿蛋白中位数为 0.3 g/24 h,从诊断到终末期肾病的中位时间为 15.0 (95% CI: 10.0 – 20.0) 年。肾移植后,同种异体移植的中位生存期为 22.0 (13.0 – 31.0) 年。移植后有一例患者早期死亡(肾移植后 2 个月感染相关),未发生导致移植失败的早期排斥反应。在所有四例接受连续 123 I-SAP 闪烁显像的病例中,肝移植均导致淀粉样蛋白消退。结论:AApoAI 淀粉样变性是一种进展缓慢、难以诊断的疾病。移植结果令人鼓舞,移植物存活率极高。
选择性血脑屏障 (BBB) 和神经血管耦合的存在是中枢神经系统血管系统的两个独特特征,它们导致神经元、神经胶质细胞和血管之间有密切的关系。这导致神经退行性疾病和脑血管疾病之间存在显著的病理生理重叠。阿尔茨海默病 (AD) 是最常见的神经退行性疾病,其发病机制尚待揭开,但主要在淀粉样蛋白级联假说的指导下进行探索。无论是作为神经退行性的诱因、旁观者还是后果,血管功能障碍都是 AD 病理难题的早期组成部分。这种神经血管退行性的解剖和功能基础是 BBB,它是血液和中枢神经系统之间的动态半透性界面,一直被证明存在缺陷。已证明几种分子和遗传变化会介导 AD 中的血管功能障碍和 BBB 破坏。载脂蛋白 E 的 ε 4 异构体是 AD 最强的遗传风险因子,同时也是 BBB 功能障碍的已知启动子。低密度脂蛋白受体相关蛋白 1 (LRP-1)、P-糖蛋白和晚期糖基化终产物受体 (RAGE) 是 BBB 转运蛋白的例子,它们在淀粉样蛋白 β 的运输中发挥着作用,因此与 AD 的发病机制有关。目前,尚无改变这种沉重疾病自然病程的策略。这种失败可能部分归因于我们对疾病发病机制的误解以及我们无法开发出能有效输送到大脑的药物。BBB 本身可以作为靶点或治疗载体,可能代表着一种治疗机会。在这篇综述中,我们旨在探索 BBB 在 AD 发病机制中的作用,包括遗传背景,并详细说明如何在未来的治疗研究中针对它。