图 1. 上图:研究地点,a) 主 10 米通量塔,配备涡流协方差装置;b) 降水计;c) 2.3 米高桅杆,安装 4 分量辐射计;d) 垂直杆,安装热电偶和加热针阵列。插图显示了该地点位于塔西亚皮克山谷,距离哈德逊湾以东约 4 公里。下图:研究地点示意图,展示了监测能量平衡条件的主要仪器。整个实验装置包含在 20 米范围内。
应使用完善的测量装置 [4] 校准已完成的光电探测器的响应度,以获得所需的不确定度。校准是针对低温辐射计 [5] 或传递标准探测器(图 4)进行的。在校准装置中,探测器的对准至关重要,对于反射陷阱探测器,通常观察到来自设备的反射光束沿着入射光束传播。对于微型陷阱,正确的对准具有挑战性,因为它的小有效区域隐藏在外壳中。另一方面,在陷阱配置中使用光电探测器的好处是,测量中反射光束的不良影响(例如进入前置光学器件等)减少了大约三个数量级。
应结合遥感仪器的设计和开发来规划和执行发射前的特性描述和校准,以满足任务要求。应使用 SI 可追溯标准对机载校准器(例如黑体)和传感器(例如光谱辐射计)进行特性描述和校准。在地球遥感的情况下,这允许对太空中的不同传感器进行相互比较和相互校准,以创建高精度的全球气候记录时间序列,从而可以轻松弥补一些不可避免的数据差距。根据美国国家标准与技术研究所 (NIST)、美国国家航空航天局获得的经验,提出了针对此次发射前工作的推荐最佳实践指南
1 简介 光学衍射是物理学中一个成熟的课题。众所周知,存在许多不同复杂程度的理论处理方法,从惠更斯小波方法到麦克斯韦方程的数值解。然而,在几个具有实际重要性和/或理论意义的情况下,衍射的全部影响要么尚未计算到所需的精度,要么尚未测量。此外,虽然衍射通常被认为是光学测量中的一个复杂因素,但衍射对设备尺寸的敏感性提出了衍射是否能在测量中发挥有用和直接作用的问题。衍射在计量学中的潜在利用是一条尚未探索的途径。辐射测量中最重要的测量之一是辐射度的测量。由于需要某种孔径才能进行这种测量以构建立体角,因此必须准确计算衍射效应,以实现最高精度的辐射测量。即使是最复杂的一级标准辐射计也需要衍射校正,该辐射计通过创建伪无限辐射源来最大限度地减少衍射效应。目前,衍射是限制一级和二级标准辐射测量精度的主要不确定性之一。对于辐射计中使用的相对较大的孔径尺寸,经典衍射理论原则上是足够的,尽管需要做工作来实现较低的计算不确定性。另一方面,对于接近几个波长尺寸的非常小的孔径,大多数衍射理论的假设都失效了。特别是色差和偏振效应变得明显,并且很难实现具有有用精度的计算和实验。尽管如此,超小孔径阵列已被考虑用作光谱滤波器。中等尺寸(即100 个波长量级)的孔径衍射在理论上是可处理的,因为小尺度效应可以忽略不计,而远场情况通常可以大大简化方程式,在实验室中是可以实现的。在这种情况下,存在一种有趣的可能性,即从衍射“反向”工作以确定孔径本身的尺寸。作为一种基于光使用的新型尺寸测量技术,这在计量学上很重要。是否具有足够的测量精度值得怀疑这些考虑导致了对衍射中未解决问题的双管齐下的研究:利用衍射测量孔径大小,并开发更精确的辐射测量衍射代码。2 衍射孔径测量 2.1 衍射孔径测量:理论 基于衍射的孔径测量技术利用了众所周知的事实,即远离衍射孔径,衍射图案的光场是孔径平面中光场的傅里叶变换。1 原则上,远处的衍射场(幅度和相位)可以通过快速傅里叶变换代码进行测量和变换,以产生完整的二维孔径函数。然而,在实践中,测量光场的相位会给实验装置带来很大的复杂性。
科学原理 随着 70 年代大规模光学成像星载传感器的出现,人们发现了一种工具,可以定性但概括性地观察和监测地球表面。这些传感器的最大优点是覆盖范围广、重复率高,其中最突出的例子是高级甚高分辨率辐射计 (AVHRR),能够及时观察不断变化的大规模现象。随着 1986 年美国沿海区域彩色扫描仪任务 (CZCS) 的结束,科学海洋学界要求一种新的太空海洋颜色观测系统,以便更准确地测定海洋成分,例如叶绿素、悬浮物和腐烂的有机物,从而提供
澳大利亚卫星交叉校准辐射计 (SCR) 系列高光谱传感器旨在直接改善商业地球观测领域越来越多使用的小型光学卫星的校准,以提供更多可互操作的数据。这些数据质量改进是通过交叉校准实现的——量化不同地球观测卫星在大气层顶部接收到的数据信号差异。实际上,这意味着来自一颗卫星的数据可以与来自其他卫星的数据相结合,以提高它们的整体效用。此外,预计光学卫星地球观测分析就绪数据 (ARD) 的辐射测量精度将从 3% 提高到 1%,这意味着能够识别特定作物,而不仅仅是识别一般的农业活动。
摘要 黑体辐射源是可计算的辐射源,常用于辐射测量、温度传播和遥感。尽管黑体源和辐射计无处不在,但它们的系统结构却非常复杂。我们设想了一种新的、主要的黑体辐射测量方法,即使用可极化量子系统集合(如里德堡原子和双原子分子)进行测量。使用这些精妙的电场传感器进行量子测量可以实现主动反馈、改进设计,并最终降低黑体标准的辐射和热不确定性。便携式、无需校准的里德堡原子物理包还可以补充各种经典辐射探测器和温度计。量子测量和黑体测量的成功融合为黑体物理学提供了一个新的基本范式。
TRMM降水雷达(PR)是第一台星载降雨雷达,也是TRMM上唯一能够直接观测降雨垂直分布的仪器。TRMM PR的频率为13.8 GHz。PR可以实现陆地和海洋的定量降雨估计。PR还可以提供降雨高度信息,这对基于辐射计的降雨率反演算法很有用。PR的覆盖范围足够小,可以研究不均匀降雨对低频微波辐射计通道相对粗糙覆盖范围的影响。PR的主要设计和性能参数如表0-2所示[Kozu等,2001]。PR的观测几何如图0-1所示。在正常观测模式下,PR 天线波束在 ±17 的横向轨道方向上扫描,结果从一端到另一端的扫描宽度为 220 公里。PR 的天线波束宽度为 0.71 ,在 ±17 的扫描角度内有 49 个观测角度箱。当 TRMM 处于 350 公里的标称高度时,水平分辨率(覆盖区大小)在天底为 4.3 公里,在扫描边缘约为 5 公里。TRMM PR 的距离分辨率为 250 米,等于天底的垂直分辨率。对于每个观测角度箱,雷达回波采样是在海面和 15 公里高度之间的距离门上进行的。对于天底入射,还收集了高达 5 公里高度的“镜像”。此外,还部分收集了表面回波(扫描角度在 ±9.94 以内)和降雨回波(扫描角度在 ±3.55 以内,高达 7.5 公里)的“过采样”回波数据。这些过采样数据将用于精确测量表面回波水平和融化层结构。根据发射前地面测试和轨道测试确定,最小可检测 Z(对应于噪声等效接收功率)从 23.3 dBZ(基于规范要求)提高到 20.8 dBZ。这主要是由于发射功率增加和接收器噪声系数降低。
摘要 — 我们开发了一种能够识别低电平脉冲射频干扰 (RFI) 的新型微波辐射计探测器。敏捷数字探测器可以通过直接测量信号的其他矩(而非传统测量的方差)来区分 RFI 和自然热辐射信号。峰度是预测电压的四阶中心矩与二阶中心矩的平方之比。它可以很好地指示 RFI 的存在。本文解决了与正确计算峰度相关的许多问题。推导出了在没有和存在脉冲正弦 RFI 的情况下峰度的平均值和标准差。峰度对短脉冲 RFI(例如来自雷达)的敏感度远远高于对连续波 RFI 的敏感度。发现脉冲正弦 RFI 的最小可检测功率与 ( M 3 N ) − 1 / 4 成比例,其中 N 是独立样本的数量,M 是接收器中的频率子带数量。
高层大气中的冰云是气候模型中不确定性的主要来源。对对流层上部的冰粒子进行全球观测可以提供有关气溶胶污染对冰粒子大小影响的信息,而冰粒子大小会影响云的降水过程和反照率 [1-3]。亚毫米波辐射测量仪器可以填补大约 50 µm 至 1 mm 之间的云冰粒子大小信息的空白。例如,CloudSat 的 94 GHz 雷达可以观测直径大于 ~600 µm 的粒子,而 MODIS 红外辐射计可以观测小于 ~50 µm 的粒子 [2]。对流层水和云冰 (TWICE) 仪器试图从 6U CubeSat 平台对冰粒子大小和水蒸气剖面进行全球观测,使用 16 个亚毫米波辐射测量通道,范围
