系统部门表示,为了演示 MIRAS 等分布式系统的技术,必须对整个仪器的代表性部件进行面包板测试和端到端测试。也就是说,我们必须超越子系统制造,进入系统级别,真正巩固孔径合成辐射计的技术,包括校准。这不仅是为了证明电气性能,也是为了证明机械设计和信号线束。因此,建议建立 MIRAS 演示试点项目 (MDPP-1) 活动,以制造整个臂段,以及位于平台轮毂中的一些其他单元,以完成系统。因此,MDPP-1 包括: – SMOS 参数任务设计 – 完整段的 STM,包括部署机制 – 四个 LICEF 天线接收器 – 为整个段和完整轮毂服务的 CAS 系统 – 为整个段或完整轮毂服务的 MOHA。
至 PRIME-1:授予 Intuitive Machines 公司,他们的第二个任务 (IM-2) 计划使用他们的 Nova-C 着陆器降落在南极地区。极地资源冰矿开采实验-1 (PRIME-1) 是月球上的一次现场资源利用演示。PRIME-1 包括用于探索新地形的风化层和冰钻 (TRIDENT) 和用于观测月球操作的质谱仪 (MSOLO),用于测量 1 米深度以下物质的挥发性含量。此次交付还将包括一个 LRA、一个用于测试无线网络的小型月球前哨探测车和一个 µ - 跳跃器演示,它将在进入(和离开)永久阴影区域 (PSR) 的途中跳跃到多个位置。跳跃器将拍摄图像并使用月球辐射计 (LRAD) 热红外测量表面亮温、毫米到厘米级的表面粗糙度和热惯性。
系统部门表示,为了展示像 MIRAS 这样的分布式系统的技术,必须将整个仪器的代表性部分放在面包板上并进行端到端测试。也就是说,我们必须超越子系统制造,进入系统级别,真正巩固孔径合成辐射计的技术,包括校准。这不仅是为了证明电气性能,也是为了证明机械设计和信号线束。因此,建议建立 MIRAS 演示器试点项目 (MDPP-1) 活动,以制造整个臂段,以及位于平台轮毂中的其他一些单元,以完成系统。因此,MDPP-1 包括: – SMOS 参数任务设计 – 完整段的 STM,包括部署机制 – 四个 LICEF 天线接收器 – 为整个段和完整轮毂提供服务的 CAS 系统 – 为整个段或完整轮毂提供服务的 MOHA。
摘要。本文提出了一种建模方法,旨在季节性地解决全球气候和土壤对陆地生态系统生产和土壤微生物呼吸模式的控制。我们使用卫星图像(高级甚高分辨率辐射计和国际卫星云气候学项目太阳辐射),以及来自全球(1 o)数据集的历史气候(每月温度和降水量)和土壤属性(质地、C 和 N 含量)作为模型输入。卡内基-艾姆斯-斯坦福方法 (CASA) 生物圈模型按月运行,以模拟植物净碳固定、生物量和养分分配、凋落物、土壤氮矿化和微生物 CO2 生成的季节性模式。模型估计的全球陆地净初级生产力为 48 Pg C yr -•,最大光利用效率为 0.39 g C MJ -• PAR。超过 70% 的陆地净产量来自
• TRUTHS 卫星将被发射到高度约为 610 公里的极地非太阳同步轨道。TRUTHS 将测量整个地球:陆地、海洋、冰川和大气层,每 61 天至少访问一次地球上的每个区域。• TRUTHS 将拥有两种主要仪器:• 高光谱成像光谱仪 (HIS) 将连续测量从紫外线到红外线(320-2400 纳米)所有波长范围内的窄光谱带辐射,地球上的空间分辨率为 50 米;• 低温太阳绝对辐射计 (CSAR) 将测量入射太阳能并作为机载“黄金标准”。• TRUTHS 还将拥有一个机载校准系统 (OBCS),该系统将使用单色仪将阳光分解成不同的波长,以提供从 CSAR 到 HIS 的校准链路——该过程和参考标准模仿了泰丁顿 NPL 实验室在地面上使用的流程和参考标准。
a)脚踩在空间站远程操作机器人的机器人手臂上,宇航员Mike Fossum在太空站的机器人手臂上限制了脚步,将机器人加油任务(RRM)有效载荷转移到了太空行走期间。b)OSAM-1的机器人维修臂(从上方)的抓斗测试模拟了在马里兰州格林贝尔特NASA的Goddard太空飞行中心的机器人操作中心中捕获自主卫星的照明条件。c)大型望远镜(例如14m分段辐射计)的精确空间组装表明,OSAM技术有望避免整流罩大小的物理局限性,并在对地球和太空科学方面的敏感性方面取得了重大进步。d)合作服务阀(CSV)的设计旨在促进轨道上的远距离抗原供应,这些推进剂和压力机将延长太空飞行资产的寿命。
DART(离散各向异性辐射传输)模型化从紫外线到热红外的辐射传输(RT),用于模拟辐射预算(RB),包括太阳诱导的叶绿素荧光(SIF)和带有大气的自然和城市表面(即地球场景)的遥感(RS)信号(激光雷达、光谱辐射计图像)。本文档 1 解释了 DART 功能及其使用方法: - 第 1 章:主要 RT 模型和 DART 概述,用于使用遥感研究陆地表面。 - 第 2 章:图形用户界面 (GUI) 中的 DART 功能(场景创建、传感器配置等)。 - 第 3 章:使用和不使用 GUI 管理 DART 及其结果的工具。 - 第 4 章:大多数 DART 输入和输出的格式。 - 第 5 章:工作包(WP0:概述,WP1:反射率,WP2:热发射,..)以练习 DART 并更好地理解 RS 的物理学。他们的模拟在 DART 网站上。初学者应该从 WP 1 和 2 开始。
我非常高兴能够以主任的永久职位首次为 FPD 的《关键路径》出版物做出贡献。今年上半年,我们取得了一些突出的进展,启动了新的任务和工作,并支持了我们当前的投资组合。对于那些不知道的人来说,戈达德被授予新的阿尔特弥斯 3 号月球环境监测站 (LEMS-A3),分配给代码 430,偏振亚毫米冰云辐射计 (PolSIR) 分配给代码 420,并正在与科学和探索理事会协调建立宜居世界观测站技术成熟项目。这并不是说我们没有继续适应令人生畏的预算环境,这种环境极大地影响了我们的任务和团队成员。这些情况极具挑战性,但也给我们的中心带来了自豪感,因为我们看到我们的团队崛起并发挥出最高水平,看到了你们的奉献精神、专业知识和毅力的真正力量。
应结合遥感仪器的设计和开发来规划和执行发射前的特性描述和校准,以满足任务要求。对于红外仪器,应使用 SI 可追溯标准对机载校准器(如黑体)和传感器(如光谱辐射计)进行特性描述和校准。对于地球遥感,这允许对太空中的不同传感器进行相互比较和相互校准,以创建高精度的全球气候记录时间序列,从而可以轻松弥补一些不可避免的数据差距。对于弹道导弹防御,这提供了基于 SI 可追溯测量的传感器质量保证。根据美国国家标准与技术研究所 (NIST) 在过去二十年与美国国家航空航天局 (NASA)、美国国家海洋与大气管理局 (NOAA) 和美国国防部 (DoD) 项目合作的经验,提出了针对此次发射前工作的推荐最佳实践。将结合过去为遥感社区服务的经验教训,讨论 NIST 的红外标准和校准设施示例。
Terra 是美国宇航局地球观测系统 (EOS) 的旗舰航天器。Terra 于 1999 年 12 月发射,并在 2000 年成功运行了第一年。Terra 是一个国际项目,涉及美国宇航局中心、NOAA、NRL、大学和工业界。其中两个仪器是在国外制造的:日本的 ASTER(先进星载热辐射和反射辐射计)和加拿大的 MOPITT(对流层污染测量)。Terra 拥有五个最先进的传感器,用于研究地球大气、陆地和海洋之间的相互作用。EOS 高级项目科学家是 Michael King,Code 900。Terra 项目科学家是 Code 913 的 Yoram Kaufman,直到 2000 年 9 月,该职位由 Code 923 的 Jon Ranson 接任。Terra 项目副科学家是 Code 913 的 Si-Chee Tsay。(有关 Terra 的更多信息,请参阅 Terra 网站 http://terra.nasa.gov/。)
