自动农作物识别是现代农业的重要分支。它为农田制图,农作物轮作分析,农田结构和农业用地使用监测提供了广泛的机会。遥感是一种通过实施各种植被指数(例如,标准化差异植被指数)结合机器学习和计算机视觉的技术,是一种可用于作物识别的潜在且有力的技术。当前的研究致力于对乌克兰监督机器识别的最新开发机器学习的准确性,即软件应用Agroland分类器,该分类器是基于Naas气候智能农业研究所的科学研究的结果而构建的。该应用程序采用了几种监督的机器学习方法,即多种规范的判别分析和逻辑回归,以区分冬季小麦,冬季大麦,冬季大麦,冬季菜籽,谷物玉米,大豆和向日葵等农作物。使用随机选择的标记的田地进行测试,每种作物100个田间。在乌克兰的所有领土上进行了测试。从农业监控地图平台中检索了月度归一化差异指数的输入值。已经确定,最高的作物识别精度与小麦有关(总准确度为82.0%,F1得分为0.90),而大豆的最差结果(占真实猜测的50.0%,F1得分为0.67)。需要进一步的详细测试和算法改进,并将继续进行。还观察到,识别精度高度取决于农作物种植的土壤气候条件。
图 1:诊断过程的框图 2.相关工作 在这一部分,我们将讨论已经在使用或正在审查的技术和技术。 Van Mourik 等人 [14] 进行了一项关于医院相关感染的机器驱动监测系统的调查。 Luo 等人 [15] 将此疾病与转移性合胞病毒 (RSV) 一起进行了审查,RSV 是一种导致细支气管炎的根本原因。 Bhattacharjee 等人 [16] 进行了一项科学审查,以研究医院感染检测的这一最新趋势。 Sinha 等人 [17] 对感染进行了另一项研究。他们报告了血培养检测感染的一些缺点。 简而言之,这是一项通过机器学习和深度学习技术对疾病预测进行全面审查的努力。此外,与文献中现有的调查文章不同,这项研究集中于一系列特定疾病,包括心血管疾病、神经疾病、前列腺、肝病和肾病。2.模糊逻辑与疾病诊断逻辑是一种多值逻辑,其中变量的实际值可以是十进制数,也可以是零到一之间的任何复数。通常,如图 2 所示的用于疾病识别的模糊逻辑过程由以下步骤创建。1)模糊器:模糊化过程由模糊器完成。它是一种将明确的输入值调整为模糊集的方法。因此,模糊器用作从观察输入到模糊值的映射。2)推理引擎:在完成模糊化过程时,推理引擎使用一组规则处理的模糊值作为认知内容的一组规则。 3)知识库:这是模糊逻辑系统的主要组成部分。整个模糊系统取决于
摘要 机器学习 (ML) 算法在广泛的生物医学应用中的快速应用凸显了信任问题以及对 ML 算法生成的结果缺乏理解。最近的研究集中于开发可解释的 ML 模型并制定透明度和道德使用指南,确保机器学习以负责任的方式融入医疗保健领域。在本研究中,我们证明了 ML 可解释性方法的有效性,可为癫痫症(一种影响全球超过 6000 万人的严重神经系统疾病)的大脑网络相互作用动态提供重要见解。使用来自 16 名患者的高分辨率颅内脑电图 (EEG) 记录,我们开发了高精度 ML 模型,将这些大脑活动记录分为癫痫发作或非癫痫发作类别,然后执行一项更复杂的任务,即描绘出癫痫发作发展到大脑不同部位的不同阶段,作为一项多类别分类任务。我们对高精度 ML 模型应用了三种不同类型的可解释性方法,以了解不同类别的大脑交互模式(包括多焦点交互)的相对贡献,这些模式在区分大脑的不同状态方面发挥着重要作用。本研究结果首次证明,事后可解释性方法使我们能够理解 ML 算法生成给定结果集的原因以及输入值的变化如何影响 ML 算法的准确性。特别是,我们在本研究中表明,可解释性方法可用于识别对癫痫发作事件有重大影响的大脑区域和交互模式。本研究结果强调了在异常脑网络研究和更广泛的生物医学研究领域中集成实施 ML 算法和可解释性方法的重要性。
对称密码学的最新趋势是,其设计要么允许有效实施侧信道和故障攻击对策,要么提供一定程度的固有保护以抵御这些物理攻击媒介。这在轻量级密码学领域尤其重要,因为轻量级密码学旨在部署在嵌入式设备中,因此物理攻击是一种现实威胁。DEFAULT 是一种轻量级对称密码,其基本结构源自 GIFT [ 10 ],由 Asiacrypt'21 [ 8 ] 提出,旨在提供针对差分故障分析 (DFA) [ 12 ] 的保护(另请参阅 [ 7 ,第 5.1 节])。提供这种保护的主要设计特征是具有线性结构的 SBox,我们将其称为 LS SBox。结果表明,无论攻击者在这种 SBox 的输入端注入多少故障,都无法准确确定输入值。 DEFAULT 的 DFA 安全性为 264 ,通常,使用相同构造,对于 n 位密码,安全性为 2 n/ 2 。量子计算的出现对密码学构成了强大的威胁。Shor 算法将密钥搜索空间复杂度降低到多项式时间,这尤其削弱了公钥算法的安全性 [32]。已有许多研究工作致力于探索公钥密码对抗量子对手的适用性,例如 [19]。通常,对称密码在量子攻击方面具有更高的安全性,Grover 算法能够通过 2 n/ 2 次查询执行完整密钥搜索。人们可能会注意到,对称密钥密码的量子安全性在设计时并未得到适当分析(基本上,量子安全性是设计者理所当然的)。例如,轻量级密码不仅在经典电路中消耗更少的资源,而且也适用于量子电路。因此,轻量级的
摘要:电力已成为我们所有人最抢手的便利设施。电力仅限于城市的时代已经一去不复返了。现在,它已经覆盖了世界每个遥远的地方。所以我们现在有一个复杂的电力系统网络。这种电力由输电线路传输。这些故障的发生是自然的。这些故障会损坏许多重要的电气设备,如变压器、发电机、输电线路。对于不间断电源,我们需要尽可能地防止这些故障。线路在输送电力时要延伸很长的距离,因此,该项目需要在尽可能短的时间内检测到故障。用于这些故障检测的基于微处理器和微控制器的系统发展迅速。本文模拟了使用 PIC 微控制器和 ADC 电流传感器检测故障的数值过流继电器。这些继电器比传统的机电继电器和静态继电器更可靠,响应更快。它们具有更大的设置范围、更高的精度、更小的尺寸和更低的成本,以及许多其他功能,例如故障事件记录、自动复位等。使用基于智能 GSM 的故障检测和定位系统来充分准确地指示和定位发生故障的确切位置。这将确保技术人员更短的响应时间来纠正这些故障,从而帮助避免变压器损坏和灾难。该系统使用电流变压器、电压变压器、PIC 16F877 微控制器、RS-232 连接器和 GSM 调制解调器。该系统自动检测故障、分析和分类这些故障,然后使用基于阻抗的算法方法计算故障与控制室的距离。最后,故障信息被传输到控制室。该项目是关于设计数字继电器,当输入值超过继电器中设置的参考值时,检测到故障,然后向断路器发出跳闸信号。总之,由于系统自动准确地提供准确的故障位置信息,因此定位故障所需的时间大大减少。关键词:PIC 微控制器、ADC 电流传感器、GSM。
我们引入神经网络作为人工智能模型之一。神经网络是生物神经细胞回路中进行的信息处理的模型。神经细胞由称为细胞体的主体、从细胞体延伸出来的树突和连接到其他细胞的轴突组成。轴突的末端附着在其他神经细胞的树突上,轴突与其他神经细胞的连接处称为突触。树突接收来自其他细胞和感觉细胞的输入信号,信号在细胞体内进行处理,并通过轴突和突触将输出信号发送给其他神经元(图2(a))。 据称大脑中的神经元数量约为 10^10 到 10^11。通过结合这些细胞,每个神经元以并行和分布式的方式处理信息,从而产生非常复杂和先进的处理。一个细胞的输出通过突触传递到其他细胞,通过轴突可以分支成数十到数百个神经元。单个细胞具有的突触连接数量从数百个到数万个不等。所有这些突触连接都有助于神经元之间的信号传输。 当一个信号从另一个神经细胞到达一个神经细胞时,膜电位会因信号而发生变化,当信号超过一定的阈值时,电位就变为正值,神经细胞就会兴奋。然后它向其他神经元发送信号。无论输入值如何,该图的形状几乎都是相同的波形,一旦超过阈值,就会产生恒定形状和幅度的电脉冲。因此人们认为,神经网络中承载信息的不是电脉冲的波形,而是电脉冲的频率(图2(b))。 细胞体的阈值函数,当输入高于阈值时,发出电脉冲,当输入低于阈值时,不发出电脉冲,具有从输入到输出的非线性转换效果。此外,还有兴奋性突触,它会释放使输入神经细胞更容易兴奋的递质,还有抑制性突触,它会使输入神经细胞更不容易兴奋。接收输入神经元可以被认为是接收来自每个输出神经元的输入的总和。 神经网络的数学模型源于对神经元的观察。 1943年,McCullough和Pitts提出了正式的神经元模型。图 2(c)中的圆圈表示一个神经元的模型。 xk 取值 0 和 1,表示该神经元接收的突触数量。
Sevagram,Wardha指导者:H.S.Belsare摘要:在这项研究中,一种新型的自动驾驶汽车导航算法,避免了与行人和临时障碍的碰撞。提出的算法通过使用RGB-D深度传感器来预测临时障碍和徘徊的行人的位置。考虑到这些环境不确定性,介绍了唯一的临时视觉流动性规则。提出了一种深入的增强学习(DRL)算法作为决策技术(以引导自动驾驶工具无事发生)。比较了深层Q-NETWORK(DQN),双重Q-Network(DDQN)和Dueling Double Deep Q-Network(D3DQN)算法,并且D3DQN的负率最少。我们使用CARLA模拟环境测试了算法,以检查RGB-D和RGB-LIDAR的输入值。构成综合神经网络D3DQN的一系列算法被选为最佳DRL算法。在减慢城市流量的建模中,RGB-D和RGB-LIDAR产生的结果基本相同。修改了更新的儿童驾驶汽车的自动驾驶版本,以证明拟议算法的实时效率。索引术语:自动驾驶工具,深度加固学习,临时凸进,避免障碍物,车道检测,对象检测。1。引言临时或临时障碍,例如路障,坑洼,速度颠簸和漫游行人,可能会为印度和类似国家的自动驾驶车辆提供挑战。另外,自动驾驶车辆可以使用Vanet(车辆临时网络)与路边单元或另一个移动车辆进行通信,以收集有关事故,道路障碍,交通拥堵和天气状况的最新信息。这种类型的信息对于允许自动驾驶车辆安全行驶并防止道路事故也很重要。研究人员已将传感器安装在车辆上,以识别临时障碍,例如,一些研究人员使用这些传感器来指导自动驾驶车辆,例如,一些研究人员开发了一种基于智能手机的Ad Hoc-Obstacle检测算法。同时,在中央服务器上记录了有关已确定障碍物(类似位置)的信息,并用于提醒其他驾驶员在同一道路上行驶的驾驶员。
本研究采用人工智能 (AI) 方法在民用领域进行威胁分析和对策,其中安全和任务关键方面至关重要。人工智能面临着可重复确定性和决策解释的挑战。本研究提出了提供可重复确定性的密集和卷积网络方法。在密集网络中,所提出的替代方法具有同等性能,并且学习权重更具结构化。所提出的方法在卷积网络中也具有更早的学习和更高的准确性。在彩色图像分类中得到证明,第一个时期的准确率从现有方案的 29% 提高到 67%。在迁移学习中,使用快速符号梯度法 (FSGM) 作为控制差异失真的分析方法进行检查,结果发现所提出的方法对学习模型的保留更显著,准确率为 31%,而不是 9%。本研究还提出了一种威胁分析方法,该方法将集合映射和第一原理分析步骤应用于使用具有虚拟化神经元的代数专家系统的符号 AI 方法。神经专家系统方法通过计算波束宽度随天线类型不确定性变化来演示参数填充。与提出的公式提取方法相结合,它为机器学习新规则提供了作为神经符号 AI 方法的潜力。所提出的方法使用分配给神经元输入值范围的额外权重作为激活强度。该方法简化了学习表示,降低了模型深度,因此具有较小的丢失可能性。最后,提出了一种用于发射器识别的图像分类方法,采用合成数据集生成方法,并展示了十四种雷达发射模式之间的准确识别,它们之间具有较高的模糊性(并实现了 99.8% 的准确率)。该方法将是一种机制,用于在检测到民用发射器的偏差时识别旨在发出威胁警报的非威胁民用雷达。
符号列表 α 岩体中薄弱面的方向。 β g , β l 分别为粒子群优化算法的全局和局部学习参数。 γ 土壤单位重量。 γ SVM 支持向量机核系数。 ϵ 高斯噪声。 ζ(x) 输入值 x 的高斯隶属函数。 θ 隧道掘进机俯仰角。 κ 土壤卸载-重新加载曲线的斜率。 μ(x) 高斯过程的平均向量。 ν l 隧道衬砌的泊松比。 ν s 土壤的泊松比。 ρ 1 , ρ 2 两个随机初始化的向量,其条目范围在 0 和 1 之间。 σ 高斯函数的标准偏差。 ϕ′ 土壤摩擦角。 ψ′ 土壤扩张角。 A 隧道掘进机的表面积。 a 使用模糊 c 均值聚类算法控制系统模糊性的参数。AR 隧道掘进机推进速度。b 可调偏差矢量。BI 岩体脆性指数。C 管串收敛。c 高斯函数均值。c′ 土壤黏聚力。CP 刀盘功率。CM 施工方法。D 隧道掘进机直径。dj 数据聚类中心 j。D c 隧道掘进机刀盘直径。DPW 弱面间深度。E l 隧道衬砌杨氏模量。E s 土壤杨氏模量。EI 抗弯刚度。EPB 土压平衡。f ( x ) 表示数据底层结构的潜在函数。FPI 场穿透指数。g* 粒子群优化算法的全局最佳历史位置。GSI 地质强度指数。H 隧道覆盖深度。H w 隧道掘进机上方地下水位高度。 it, il 土面沉降曲线横、纵向拐点。J FCM 模糊c均值聚类目标函数。JF 隧道掘进机顶进力。K 侧向土压力系数。ks 土的渗透性。k sub 路基反力模量。k ( x , x ′) 输入对x和x′的协方差函数。
输入值,以便将模型预测更改为期望输出,这在可解释人工智能 (XAI) 中越来越多地用于促进人类与人工智能模型的交互 (Miller 2019)。我们通过扩展先前的反事实模型 (Russell 2019) 来形式化置信度的反事实解释。表 1 解释了 Russell (2019) 的模型与我们提出的方法之间的区别。然后,我以两种不同的呈现形式生成这些解释:(1) 基于示例的反事实和 (2) 基于可视化的反事实。为了评估解释,我们进行了用户研究,因为人们越来越接受可解释性技术应该建立在哲学、心理学和认知科学的研究之上 (Miller 2019),并且解释的评估过程应该涉及用户研究。我们为两个不同的领域招募了总共 180 名参与者。为了评估理解,我们使用任务预测(Hoffman 等人,2018 年,第 11 页)。参与者会得到一些实例,他们的任务是决定 AI 模型会为哪个实例预测更高的置信度分数。因此,任务预测有助于评估用户对他们对模型置信度的理解的心理模型。为了评估信任,我们使用了(Hoffman 等人,2018 年,第 49 页)的 10 点李克特信任量表。对于满意度,我们使用了(Hoffman 等人,2018 年,第 39 页)的 10 点李克特解释满意度量表。结果表明,与没有解释的基线相比,这两种形式的反事实解释都增加了信任和理解。值得注意的是,基于可视化和基于示例在提高理解、信任和满意度方面几乎没有差异。使用定性分析,我们观察到这两种方法的一些局限性:•人们使用基于案例的推理来理解基于示例的解释。也就是说,他们在基于示例的演示中找到最接近的例子,而忽略了置信度得分和特征值之间的线性相关性。这个结果表明,我们在使用基于示例的解释来解释连续变量时应该小心谨慎。•虽然使用基于可视化的解释更容易解释相关性,但是当并非所有反事实点都显示在解释中时,人们不愿意推断出最低值和最高值之外的相关性。因此,应该在解释中显示所有反事实点以缓解这个问题。