相场方法的思想可以追溯到 [22] 和 [30] 的开创性工作。从那时起,它已成功应用于许多科学和工程领域。相场法使用辅助变量 ϕ(相场函数)来局部化相并用一层厚度较小的层来描述界面。相场函数在两个相中分别取两个不同的值(例如 +1 和 −1),并在整个界面上平滑变化。在相场模型中,界面被视为过渡层,在该过渡层上某些物理量会连续但急剧地发生变化。相场模型可以从变分原理自然推导出来,即通过最小化整个系统的自由能。因此,推导出的系统满足能量耗散定律,这证明了其热力学一致性并可得到一个数学上适定的模型。此外,能量定律的存在为设计能量稳定的数值方案提供了指导。相场法现在已成为研究界面现象的主要建模和计算工具之一(参见[8–13,20,25,26]及其参考文献)。
(1)输入图像:模型的输入是大小为32×32×3的图像,其中32×32表示空间分辨率,3表示RGB通道(2)初始卷积层:卷积层应用于提取初始低级特征,例如提取初始低级特征,例如Edges和Tex-ters和Tex-ters。该层之后的输出的大小为16×16×32,其中32是过滤器生成的特征地图数量(3)瓶颈残留块:该体系结构的主要构件是瓶颈残留块。这些块对于特征提取很有效,并形成网络(4)过渡层的骨干:在最终的瓶颈块之后,速溶层进一步调整了特征的维度。输出大小减小到1×1×1290,代表高度连接的空间信息(5)完全连接的层:最后阶段是一个完全连接的层,可将功能映射到输出类概率中。输出大小为1×1×3,对应于带有3个输出类的分类任务
摘要 - 背面照明(BSI)3D堆叠的CMOS图像传感器对于包括光检测和范围(LIDAR)在内的各种应用中引起了重大兴趣。这些设备的3D集成中的重要挑战之一涉及单个光子雪崩二极管(SPAD)晶圆的良好控制的背面稀疏,后者堆叠着CMOS WAFERS。背面晶圆稀疏通常是通过硅的回培养和掺杂敏感的湿化学蚀刻的组合来完成的。在这项研究中,我们开发了一种基于量身定制的HF:HNO 3:CH 3 COOH(HNA)化学的湿蚀刻过程,能够在P+/P硅过渡层中实现蚀刻层,具有高掺杂级别的选择性(> 90:1)。在300毫米晶片中证明了〜300 nm的极佳总厚度变化的可行性。此外,还表征了包括染色和表面粗糙度在内的HNA蚀刻硅表面的众所周知的特性。最后,提出了一种湿的化学尖端方法来减少表面粗糙度。
本文是一系列研究,该系列研究了从其新生的原始磁盘(PPD)中积聚的行星的观察性外观。我们评估了在辐射流体动力(RHD)类似物中确定的气温分布与通过蒙特卡洛(MC)辐射转运(RT)方案重新计算的差异。我们的MCRT模拟是针对全局PPD模型进行的,每个模型由嵌入在轴对称全局磁盘模拟中的局部3D高分辨率RHD模型组成。我们报告了两种方法之间的一致性水平,并指出了几个警告,这些警告阻止了温度分布与我们各自的选择方法之间的完美匹配。总体而言,一致性水平很高,高分辨率区域的RHD和MCRT温度之间的典型差异仅为10%。最大的差异接近磁盘光球,光学密集区域和薄区域以及PPD的遥远区域之间的过渡层,偶尔超过40%的值。我们确定了这些差异的几个原因,这些原因主要与用于流体动力模拟(角度和频率平衡以及散射)和MCRT方法(忽略内部能量对流和压缩和扩展工作的典型辐射转移求解器的一般特征有关)。这提供了一种清晰的途径,以减少未来工作中系统的温度不准确。基于MCRT模拟,我们最终确定了整个PPD的通量估计值的预期误差和从其环境磁盘中积聚气体的行星的预期误差,而与山相中的气体堆积量和使用模型分辨率无关。
摘要:热锻模具受到周期性热应力作用,经常以热疲劳、磨损、塑性变形和断裂的形式失效。为延长热锻模具的使用寿命并降低总生产成本,提出了一种热锻模具梯度多材料线材电弧增材再制造方法。多材料梯度界面的性能对决定最终产品的整体性能起着至关重要的作用。本研究将热锻模具再制造区分为过渡层、中间层和强化层三个沉积层。在5CrNiMo热锻模具钢上进行了梯度材料线材电弧增材制造实验,对梯度界面的微观组织、显微硬度、结合强度和冲击性能进行了表征和分析。结果表明,梯度添加剂层及其界面无缺陷,梯度界面获得了高强度的冶金结合。梯度添加剂层的组织从底层到顶层呈现贝氏体到马氏体的梯度转变过程。显微硬度从基体层到表面强化层逐渐增加,在100 HV范围内形成三级梯度变化,3个界面的冲击韧性值分别为46.15 J/cm 2 、54.96 J/cm 2 、22.53 J/cm 2 ,冲击断口形貌从延性断裂到准解理断裂,梯度界面力学性能表现为硬度和强度梯度增加,韧性梯度降低。采用该方法再制造的热锻模具实际应用,平均寿命提高了37.5%,为热锻模具梯度多材料丝电弧增材再制造的工程应用提供了科学支撑。
29] 及其中的参考文献)。在演化过程中,薄膜/蒸汽界面可能会发生复杂的拓扑变化,如夹断、分裂和增厚,这些变化都给该界面演化的模拟带来了很大困难。[1] 提出了一种相场模型,该模型可以自然地捕捉形态演化过程中发生的拓扑变化,并且可以轻松扩展到高维空间,其中采用了稳定化方案的谱方法。相场方法的思想可以追溯到 [22] 和 [30] 的开创性工作。从那时起,它已成功应用于许多科学和工程领域。相场法使用辅助变量 φ(相场函数)来局部化相并用一层小厚度来描述界面。相场函数在两个相中分别取两个不同的值(例如 +1 和 −1),并在整个界面上平滑变化。在相场模型中,界面被视为过渡层,界面上某些物理量会连续但急剧地发生变化。相场模型可以从变分原理自然推导出来,即通过最小化整个系统的自由能。结果,导出的系统满足能量耗散定律,证明了其热力学一致性,并得到了一个数学上适定的模型。此外,能量定律的存在为设计能量稳定的数值方案提供了指导。相场方法现在已成为研究界面现象的主要建模和计算工具之一(参见[8–13,20,25,26]及其参考文献)。从数值角度来看,对于相场模型,数值近似中的一个主要挑战是如何设计无条件的能量稳定方案,使半离散和全离散形式下的能量都保持耗散。能量耗散定律的保持尤为重要,对于排除非物理数值解至关重要。事实上,已经观察到不遵守能量耗散定律的数值格式可能导致较大的数值误差,特别是对于长时间模拟,因此特别需要设计在离散级别保持能量耗散定律的数值格式。开发用于近似相场模型的数值格式的另一个重点是构建高阶时间推进格式。在一定精度的要求下,当我们想要使用更大的时间推进步骤来实现长时间模拟时,高阶时间推进格式通常比低阶时间推进格式更可取。这一事实促使我们开发更精确的格式。此外,不言而喻,线性数值格式比非线性数值格式更有效,因为非线性格式的求解成本很高。在本文中,我们研究了基于 SAV 方法的线性一阶和二阶时间精确、唯一可解且无条件能量稳定的数值格式,用于解决固态脱湿问题相场模型,该 SAV 方法适用于一大类梯度流 [15, 16]。引入辅助变量的梯度流格式首次在 [23,24] 中提出,称为不变能量二次化 (IEQ) 方法,其中辅助变量是一个函数。SAV 方法的基本思想是将梯度流的总自由能 E (φ) 分为两部分,写为