图4.1(a)高级系统设计我们的自动驾驶汽车系统设计具有层次结构,其中包括六个主要组件。在顶层,该汽车配备了一系列传感器,用于全面的环境感知。在第二层中,处理后的传感器数据进行预处理和过滤以提取相关信息。随后,系统分支分为两个模块:环境感知和环境映射。利用计算机视觉技术在内,包括对象检测,识别,深度估计和创建占用网格的创建,这些模块同时起作用,以促进本地化和状态估计过程。具体来说,采用随机样品共识(RANSAC)算法进行稳健状态估计,以确保在环境中准确定位。在第四级上移动层次结构,通过层次有限状态机的利用来执行运动计划。此方法使系统能够有效地生成最佳轨迹和
•感知运行机器学习模型,以从相机和激光镜头产生的传感器读数中提取信息。•本地化使用GPS和高清映射来合并车辆的精确位置。•预测预测附近的物体(例如其他车辆,行人)将如何行事和移动。•计划生成安全舒适的运动计划,供车辆采用。•控制将运动计划转换为转向,加速和制动命令。这些组件由通过机器学习和传统算法实现的模块组成,必须进行协调以执行安全舒适的驾驶演习。此设计描述了一个化合物AI系统[15],并且由于与人类代理和调节的密切相互作用而进化了这种方式,这要求它们高度解释且可调试[3,10]。与用于语言模型的复合AI系统不同,该系统在大规模和目标吞吐量和统计服务级别的目标(SLOS)上进行操作,AVS必须符合较高的标准,以实现可靠性和性能,并且对延迟进行了优化。严格的目标延迟SLO分解为单个组件的截止日期[9],必须满足以进行安全操作。为了可靠性,系统完全在没有外部依赖项的汽车上运行,尽管它们通常可以通过蜂窝连接访问网络。我们观察到,这些模块具有明确的依赖性和目标SLO,与基于云的微服务档案具有相似之处,并研究了AVS中查看组件的含义。这使我们可以根据SLO,配置和合同来推论组件,这些组件可提供跨组件的明确API和保证。这确保了一定程度的最低性能,并使模块化开发加速了改进。将模块化的含义呈现到极端,我们可以想象这些服务的多种变体,这些服务提供了不同的表现保证(例如模型专门用于城市与模型特殊的模型,用于云,低延迟模型,用于快速决策)。如果我们接受AVS是具有许多不同有益配置的服务集合,我们可以优化整体管道
摘要 - 动感计划者对于在各种情况下自动化车辆的安全操作至关重要。但是,没有运动计划算法在文献中实现了完美,并且提高其绩效通常是耗时且劳动力密集的。为了解决上述问题,我们提出了Drplanner,这是第一个旨在使用大型语言模式自动诊断和维修运动计划者的框架。最初,我们从天然和编程语言中生成了计划者及其计划的轨迹的结构化描述。利用大型语言模型的深刻功能,我们的框架返回了修复的计划者,并具有详细的诊断描述。此外,我们的框架在评估修复结果的评估中持续反馈在迭代上进步。使用基于搜索和采样的运动计划者为自动车辆验证我们的方法;实验结果强调了在提示中进行演示的需求,并表明了我们框架有效识别和纠正难以捉摸的问题的能力。
皮质神经元种群的尖峰活性通过少数人口范围的协方差模式(“潜在动力学”)很好地描述。这些潜在动力学在很大程度上是由确定局部场电位(LFP)产生的相同相关的突触电流驱动的。然而,潜在动力学和LFP之间的关系仍然在很大程度上尚未探索。在这里,我们为灵长类动物感觉运动皮层的三个不同区域表征了这种关系。潜在动力学和LFP之间的相关性是频率依赖性的,并且在各个区域之间有所不同。但是,对于任何给定的区域,这种关系在各个行为之间保持稳定:在主电动机和前皮层中,LFP-LANTENT动力学相关曲线在运动计划和执行之间非常相似。LFP与神经群体潜在动力学之间的这些强大关联有助于弥合使用两种记录的行为神经相关性的研究丰富的研究。
本文提出了一种使用增强和虚拟现实技术的机器人教学方法。机器人教学对于机器人完成工业生产的几项任务至关重要。尽管有各种方法可以执行机器人操纵的运动计划,但仍需要机器人教学才能进行精确和可靠性。在线教学,其中物理机器人在真实空间中移动以获得所需的运动,并且由于其易于性和可靠性而被广泛执行。但是,需要实际的机器人移动。相比之下,可以在计算空间中完全实现局部教学,并且需要将机器人的周围构造为计算机图形模型。此外,planar显示器不提供3D场景上的精通信息。我们提出的方法可以作为频道教学的使用,但是操作员可以使用头部安装的设备和虚拟3D空间中的指定控制器来直观地操纵机器人。我们通过增强和虚拟现实技术展示了机器人教学的两种方法,并显示了一些实验结果。
操纵器的工作空间(定义为它可以达到的所有职位)是确定其操作适用于给定任务的重要方面。对于许多应用程序,有趣的是通过将能力措施分配给工作空间中的每个位置,例如Yoshikawa提出的可操作性指数[29],从而生成所谓的能力图。能力图有助于许多随后的任务,例如运动计划[30,20,24],本地化[21,23],人体机器人相互作用[25,31]和硬件设计[14]。使用传统方法进行准确的能力图需要数小时才能计算[30,20]。尤其是在机器人形态会发生变化的情况下,例如在模块化机器人[27,1]或机器人设计[7,12]的背景下,计算复杂性因此大大限制了能力图的适用性。这项工作使用神经领域[26]来有效地生成各种串行操作器的能力图。在数值实验中,我们表明可以平均创建具有300,000多个查询位置的精确能力图。此外,我们表明我们的方法概括为分布样本。
摘要 - 金属制造过程的未来,例如激光切割,焊接和添加剂制造,应依赖于行业4.0支头的智能系统。这样的数字创新确实正在推动机械制造商进行深刻的转变。是根据针对特定过程设计和优化的定制机器,雄心勃勃是利用开放性和大量的工业机器人可用性,以提高多流程实现的灵活性和可重新配置。挑战在于,机械构建者将自己转变为高知名度专业的过程驱动的机器人集成器,能够用智能传感和认知方面的过程控制器杠杆优化机器人运动。这项工作描述了BLM集团和Politecnico di Milano的多年合作,在CNR的支持下,重点是部署完整的机器人工作站,其特征是机器人控制和运动计划与制造过程的完整整合。索引术语 - 指导的能量沉积,激光金属拆卸,添加剂制造的设计,CAD/CAM
将来,我们希望机器人能够在家庭和医院等非结构化环境中运行,并具有长远的计划能力。尽管从原始观察中获得了深入的强化学习(RL),但很大程度上取决于形状奖励的可用性来指导学习[31,34]。另一方面,在过去的几十年中,已经证明了任务和运动计划可以解决更长的目标定向任务,例如从扭矩控制[20,39,40,43]中制作一杯咖啡。但是,这些方法通常需要预先研究的离散抽象状态,任务表示和过渡模型,例如机器人是否持有杯子以及哪些动作(或扰动)会改变这种抽象状态。在本文中,我们旨在从视频互动数据中学习用于高级抽象计划的离散表示形式,并结合学习的短马控制器。
4202 - 法律网络科学 26 4203 - 民主的计算视角 27 4204 - 机器学习:基础和新前沿 28 4205 - 构建游戏原型以探索游戏感觉设计以获得情感体验 29 4206 - 使用生成模型学习运动计划 30 4207 - 在高维神经科学数据中建模弱信号 31 4208 - 学术界的泄漏管道 32 4209 - 几何(交叉)图中的距离 33 4210 - 在机器学习的帮助下使用物理模拟接近百亿亿次级 34 4211 - 用于核酸纳米结构的 DNAforge 设计工具 35 4212 - 概率机器学习中的位置 36 4213 - 分布式和并行计算理论 37 4214 - 贝叶斯工作流程38 4215 - 利用人类反馈进行强化学习的 LLM 分布式训练 (RLHF) 39
• 言语发音,包括发音、运动计划和执行、音系学和口音矫正 • 流畅性和流畅性障碍 • 声音和共鸣,包括呼吸和发声 • 接受性语言和表达性语言,包括音系学、形态学、句法学、语义学、语用学(语言使用和交流的社会方面)、语言前交流(如手势、符号、肢体语言)以及说、听、读、写的能力 • 听力,包括对言语和语言的影响 • 吞咽/喂食,包括(a)颌面肌的结构和功能和(b)口腔、咽喉、肺、食道、胃肠道和生命周期内的相关功能 • 沟通的认知方面,包括注意力、记忆力、排序、解决问题和执行功能 • 沟通的社会方面,包括挑战性行为、无效的社交技能和缺乏沟通机会 • 辅助和替代沟通方式