Loading...
机构名称:
¥ 1.0

操纵器的工作空间(定义为它可以达到的所有职位)是确定其操作适用于给定任务的重要方面。对于许多应用程序,有趣的是通过将能力措施分配给工作空间中的每个位置,例如Yoshikawa提出的可操作性指数[29],从而生成所谓的能力图。能力图有助于许多随后的任务,例如运动计划[30,20,24],本地化[21,23],人体机器人相互作用[25,31]和硬件设计[14]。使用传统方法进行准确的能力图需要数小时才能计算[30,20]。尤其是在机器人形态会发生变化的情况下,例如在模块化机器人[27,1]或机器人设计[7,12]的背景下,计算复杂性因此大大限制了能力图的适用性。这项工作使用神经领域[26]来有效地生成各种串行操作器的能力图。在数值实验中,我们表明可以平均创建具有300,000多个查询位置的精确能力图。此外,我们表明我们的方法概括为分布样本。

使用神经场生成机器人能力图

使用神经场生成机器人能力图PDF文件第1页

使用神经场生成机器人能力图PDF文件第2页

使用神经场生成机器人能力图PDF文件第3页

使用神经场生成机器人能力图PDF文件第4页

使用神经场生成机器人能力图PDF文件第5页

相关文件推荐

2024 年
¥2.0
2024 年
¥1.0
2024 年
¥8.0
1900 年
¥1.0
2025 年
¥3.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥2.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0