摘要:空投试验中飞机与降落伞的跟踪至关重要,需要研究降落伞的打开状态和飞行轨迹,如何高效准确地获取降落伞的形变数据和轨迹数据成为越来越多学者的研究方向。目前实际的数据采集主要由实验人员手持高清高速摄像机对降落伞进行跟踪拍摄,获得空投过程中降落伞的图像序列,但这些方法无法获得降落伞的运动轨迹,且易受人为因素的干扰。本文设计了TuSeSy智能转台伺服系统,可自动跟踪空投试验中的飞机与降落伞,具体而言,TuSeSy根据实际拍摄图像与跟踪算法推断图像的差异生成控制指令(从而真正跟踪目标)。此外,我们提出了一种基于图像帧差和光流的有效多目标跟踪切换算法,实现了空投试验中从飞机到降落伞的实时切换。为了评估TuSeSy的性能,我们进行了大量的实验;实验结果表明,TuSeSy不仅解决了错误目标跟踪的问题,而且还降低了计算开销。此外,与其他跟踪切换方法相比,多目标跟踪切换算法具有更高的计算效率和可靠性,确保了转台伺服系统的实际应用。
摘要:至关重要的是要问,代理如何仅使用通过习惯性感觉运动经验获得的部分世界模型来生成行动计划,从而实现目标。尽管许多现有的机器人研究都使用了前向模型框架,但存在高自由度的泛化问题。当前的研究表明,采用生成模型的预测编码 (PC) 和主动推理 (AIF) 框架可以通过学习低维潜在状态空间中的先验分布来开发更好的泛化,该先验分布表示从习惯性感觉运动轨迹中提取的概率结构。在我们提出的模型中,学习是通过推断最佳潜在变量以及突触权重来最大化证据下限来进行的,而目标导向规划是通过推断潜在变量来最大化估计下限来完成的。我们提出的模型在模拟中使用简单和复杂的机器人任务进行了评估,通过为正则化系数设置中间值,证明了在有限的训练数据下学习中具有足够的泛化能力。此外,比较模拟结果表明,由于先验学习将运动计划的搜索限制在习惯轨迹范围内,因此所提出的模型在目标导向规划中优于传统的前向模型。
摘要——从大脑活动进行运动学解码有助于开发康复或增强功率的脑机接口设备。从非侵入性脑电图 (EEG) 记录的低频信号与用于运动轨迹解码 (MTD) 的神经运动相关性相关。在本通讯中,研究了从运动前 delta 波段 (0.5-3 Hz) EEG 解码运动运动轨迹的能力,适用于健康参与者。具体来说,提出了两个基于深度学习的神经解码器,称为 PreMovNet-I 和 PreMovNet-II,它们利用运动前 EEG 数据中存在的运动相关神经信息。为此,使用了运动开始前具有不同时间滞后的 150 毫秒、200 毫秒、250 毫秒、300 毫秒和 350 毫秒的 EEG 数据段。使用 EEG 为抓握和举起任务 (WAY-EEG-GAL 数据集) 呈现 MTD,并将各种滞后作为神经解码器的输入。将所提出的解码器的性能与最先进的多变量线性回归 (mLR) 模型进行比较。使用皮尔逊相关系数和手部轨迹作为性能指标。结果证明了使用运动前 EEG 数据解码 3D 手部运动学的可行性,从而能够更好地控制基于 BCI 的外部设备,例如外骨骼/外骨骼。
摘要。背景:随着中国进入一个衰老的社会,2050年60岁以上的人数将达到34.9%,导致中风患者的显着增加。目的:本文提出了康复机器人步行者在日常生活中的步行帮助,并提出了在步态训练期间重新学习电动机的控制方法。步行者由一个全向移动平台(OMP)组成,该平台可确保步行者可以在地面上移动,体重支撑系统(BWS),该系统能够提供所需的卸载力以及骨盆辅助机制(PAM),以为用户提供四个自由度并避免刚性影响。研究目标是更好地了解步态训练期间的辅助控制策略。方法:对于人机互动控制,采用了辅助控制策略来指导用户的动议并改善交互体验。为了在三维空间中构建力场,系统的动力学得出以提高力控制的准确性。结果:仿真结果表明,运动轨迹周围的力场是在三维空间中产生的。为了理解力场,我们在矢状平面上设计了模拟,并且控制器可以生成适当的力场。初步实验结果与模拟结果一致。结论:基于数学模拟和初步测试,结果表明,所提出的系统可以在目标轨迹周围提供指导力,力量控制的准确性仍有待提高。
开创性的研究表明,通过广泛调谐的神经元的大量人群的综合作用,而不是通过少量的高度调节神经元1来编码。几个系统为大脑功能中的“分布式编码”提供了进一步的证据2,3。然而,这种投资使用了反复试验的单个神经元的串行记录,因此无法以单次试验来证明对大脑信息编码的神经元种群。同时(平行)神经元种群记录的技术可以使用随机抽样的神经元种群对大脑中的信息进行出人意料的编码,尤其是在体感4-6和边缘系统中的7。,我们通过从慢性植入的电动机(MI)皮层(MI)皮层和腹侧(VL)Thalamus中的慢性植入电极阵列中记录来解决这些问题,以前肢移动任务进行训练的大鼠。我们问了三个问题。首先,在Mi Cortex和/或Vl Thala-Mus编码前肢运动轨迹中,神经元种群活性的线性或非线性数学转化如何?第二,这些“电机代码”是否可以用于生成在线“神经元群体功能”,以实时控制机器人手臂,以足够的精度代替受过训练的运动任务中的动物前肢运动?第三,可以以这种神经生物的模式训练(奖励神经活动本身)会改变或消除先前条件的运动?
对太空物体进行太空检查和特性描述的能力是下一代太空态势感知的核心。诊断和应对航天器异常的能力往往因缺乏对飞行中的目标飞行器进行检查或测试的能力而受到阻碍。虽然可伸缩臂(如部署在航天飞机和空间站上的机械臂)可以提供一些有限的检查能力,但自由飞行的伴生飞行器可以提供围绕目标的最大移动灵活性。安全高效地使用伴生飞行器需要能够最大限度地减少航天器资源(例如时间或燃料)的轨迹,同时遵守复杂的路径和状态约束。本文研究并比较了用于在复杂约束下寻找各种潜在检查操作的最佳轨迹的解决方法。研究的两种解决方法是基于随机性的自适应 A* 搜索方法和基于直接配置的非线性优化方法。我们研究了利用脉冲燃烧和连续推进的轨迹,以及包括额外约束的问题,例如在复杂环境中检查特定目标区域可能需要的复杂禁区和推进器羽流限制。这项工作具有广泛的适用性,可以扩展到适用于各种相对轨迹问题。一个这样的例子涉及多个检查卫星共同进行太空检查机动,需要高效计算复杂的相对运动轨迹。
抽象提取神经活动的高维记录与复杂行为之间的关系是系统神经科学中的无处不在问题。朝向这个目标,编码和解码模型试图推断出给定行为的神经活动的条件分布,反之亦然,而维度降低技术旨在提取可解释的低维表示。变化自动编码器(VAE)是易于推断神经或行为数据低维嵌入的富裕深度学习模型。然而,VAE准确地对任意的条件分布进行建模,例如在神经编码和解码中遇到的有条件分布,甚至是同时遇到的。在这里,我们提出了一种基于VAE的方法,用于准确计算此类条件分布。我们通过在掩盖行走环的掩盖身体部分上检索条件分布来验证具有已知地面真理的任务的方法,并证明了对高维行为时间序列的适用性。最后,我们概率地从猴子到达任务中的神经种群活动中解释运动轨迹,并查询同一VAE的编码神经活动的编码。我们的方法为神经和行为数据的关节维度降低和学习条件分布提供了统一的观点,这将允许将神经科学中的常见分析扩展到当今的高维多模式数据集。
人类机器人协作(HRC)依赖于对人类意图的准确和及时认识以确保无缝相互作用。在常见的HRC任务中,已经广泛研究了人身到机器人的对象移交,以计划在对象接收期间的机器人行动,假设人类的对象移交意图。但是,将移交意图与其他动作区分开来,受到了有限的关注。大多数对Han-Dovers的研究都集中在视觉检测运动轨迹上,这通常会导致轨迹重叠时延迟或错误检测。本文研究了人类对物体移交的意图是否反映在基于非运动的生理信号中。我们进行了比较三种数据模式的多模式分析:脑电图(EEG),凝视和手动信号。我们的研究旨在区分HRC环境中的移交预期的动作和非移交动作,从而评估每种形态在预测和之后人类运动开始之前和之后对这些行为进行分类时的表现。我们根据这些方式开发和评估人类意图探测器,比较它们在识别切换意图方面的准确性和时机。据我们所知,这是在人类机器人移交的相同实验环境中系统地开发和测试意图探测器的第一项研究。 我们的分析表明,移交意图可以是据我们所知,这是在人类机器人移交的相同实验环境中系统地开发和测试意图探测器的第一项研究。我们的分析表明,移交意图可以是
本文重点介绍了位置准确性低的问题和在复杂环境中移动机器人的不良环境感知性能。它基于IMU和GP的机器人姿势信息和环境知觉信息进行了关键的技术研究,以检测机器人自己的姿势信息,以及激光雷达和3D摄像头,以感知环境信息。在“姿势信息融合层”中,粒子群处理算法用于优化BP神经网络。没有偏见的卡尔曼过滤,并实现了未经意识的卡尔曼滤波器,以实现INS-GPS松散耦合导航,从而减少了INS组件IMU的偏见和噪声。此外,当GPS信号丢失发生时,训练有素的神经网络可用于输出预测信息,以进行惯性导航系统的错误校正,提供更准确的速度,并将信息作为绝对位置约束。在环境感知融合层中,补偿的IMU预一整合性调查分别与次要水平分别与视觉探光仪和激光镜探测融合。这使机器人的实时精确定位和环境图的更精细结构。最后,使用实际收集的轨迹来验证算法,以进行multi传感器信息的两级融合。实验结果表明,该算法提高了机器人的定位准确性和环境感知性能。机器人运动轨迹和原始真实轨迹之间的最大误差为1.46 m单位,而最小误差为0.04 m单位,平均误差为0.60 m。
全息时空 (HST) 的形式主义是将洛伦兹几何的原理翻译成量子信息语言。沿类时间轨迹的间隔及其相关的因果菱形完全表征了洛伦兹几何。贝肯斯坦-霍金-吉本斯-'t Hooft-雅各布森-菲施勒-萨斯坎德-布索协变熵原理将与菱形相关的希尔伯特空间维度的对数等于菱形全息屏幕面积的四分之一,以普朗克单位测量。这一原理最令人信服的论据是雅各布森推导的爱因斯坦方程作为这一熵定律的流体动力学表达。在这种情况下,零能量条件 (NEC) 被视为熵增加局部定律的类似物。爱因斯坦相对论原理的量子版本是一组对因果钻石沿不同类时轨迹共享的相互量子信息的约束。将这一约束应用于相对运动轨迹是 HST 中最大的未解问题。HST 的另一个关键特征是它声称,对于非负宇宙常数或远小于负 cc 渐近曲率半径的因果钻石,钻石本体中的局部自由度是全息屏幕上定义的变量的约束状态。该原理对 BH 熵公式中原本令人费解的特征进行了简单的解释,并解决了 Minkowski 空间中黑洞的防火墙问题。它激发了 CKN [ 1 ] 的协变版本,该版本对量子场论 (QFT) 的有效性范围有限制,并详细描绘了 QFT 作为精确理论的近似值出现的方式。